Solving Recurrent MIPs with Semi-supervised Graph Neural Networks

We propose an ML-based model that automates and expedites the solution of MIPs by predicting the values of variables. Our approach is motivated by the observation that many problem instances share salient features and solution structures since they differ only in few (time-varying) parameters. Examp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Benidis, Konstantinos, Rosolia, Ugo, Rangapuram, Syama, Iosifidis, George, Paschos, Georgios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Benidis, Konstantinos
Rosolia, Ugo
Rangapuram, Syama
Iosifidis, George
Paschos, Georgios
description We propose an ML-based model that automates and expedites the solution of MIPs by predicting the values of variables. Our approach is motivated by the observation that many problem instances share salient features and solution structures since they differ only in few (time-varying) parameters. Examples include transportation and routing problems where decisions need to be re-optimized whenever commodity volumes or link costs change. Our method is the first to exploit the sequential nature of the instances being solved periodically, and can be trained with ``unlabeled'' instances, when exact solutions are unavailable, in a semi-supervised setting. Also, we provide a principled way of transforming the probabilistic predictions into integral solutions. Using a battery of experiments with representative binary MIPs, we show the gains of our model over other ML-based optimization approaches.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2779556431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779556431</sourcerecordid><originalsourceid>FETCH-proquest_journals_27795564313</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwDM7PKcvMS1cISk0uLSpKzStR8PUMKFYozyzJUAhOzc3ULS4tSC0qyyxOTVFwL0osyFDwSy0tSswBUiXl-UXZxTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kbm5pampmYmxoTJwqAHNyOXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779556431</pqid></control><display><type>article</type><title>Solving Recurrent MIPs with Semi-supervised Graph Neural Networks</title><source>Free E- Journals</source><creator>Benidis, Konstantinos ; Rosolia, Ugo ; Rangapuram, Syama ; Iosifidis, George ; Paschos, Georgios</creator><creatorcontrib>Benidis, Konstantinos ; Rosolia, Ugo ; Rangapuram, Syama ; Iosifidis, George ; Paschos, Georgios</creatorcontrib><description>We propose an ML-based model that automates and expedites the solution of MIPs by predicting the values of variables. Our approach is motivated by the observation that many problem instances share salient features and solution structures since they differ only in few (time-varying) parameters. Examples include transportation and routing problems where decisions need to be re-optimized whenever commodity volumes or link costs change. Our method is the first to exploit the sequential nature of the instances being solved periodically, and can be trained with ``unlabeled'' instances, when exact solutions are unavailable, in a semi-supervised setting. Also, we provide a principled way of transforming the probabilistic predictions into integral solutions. Using a battery of experiments with representative binary MIPs, we show the gains of our model over other ML-based optimization approaches.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Exact solutions ; Graph neural networks ; Optimization ; Route planning</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Benidis, Konstantinos</creatorcontrib><creatorcontrib>Rosolia, Ugo</creatorcontrib><creatorcontrib>Rangapuram, Syama</creatorcontrib><creatorcontrib>Iosifidis, George</creatorcontrib><creatorcontrib>Paschos, Georgios</creatorcontrib><title>Solving Recurrent MIPs with Semi-supervised Graph Neural Networks</title><title>arXiv.org</title><description>We propose an ML-based model that automates and expedites the solution of MIPs by predicting the values of variables. Our approach is motivated by the observation that many problem instances share salient features and solution structures since they differ only in few (time-varying) parameters. Examples include transportation and routing problems where decisions need to be re-optimized whenever commodity volumes or link costs change. Our method is the first to exploit the sequential nature of the instances being solved periodically, and can be trained with ``unlabeled'' instances, when exact solutions are unavailable, in a semi-supervised setting. Also, we provide a principled way of transforming the probabilistic predictions into integral solutions. Using a battery of experiments with representative binary MIPs, we show the gains of our model over other ML-based optimization approaches.</description><subject>Exact solutions</subject><subject>Graph neural networks</subject><subject>Optimization</subject><subject>Route planning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwDM7PKcvMS1cISk0uLSpKzStR8PUMKFYozyzJUAhOzc3ULS4tSC0qyyxOTVFwL0osyFDwSy0tSswBUiXl-UXZxTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kbm5pampmYmxoTJwqAHNyOXQ</recordid><startdate>20230220</startdate><enddate>20230220</enddate><creator>Benidis, Konstantinos</creator><creator>Rosolia, Ugo</creator><creator>Rangapuram, Syama</creator><creator>Iosifidis, George</creator><creator>Paschos, Georgios</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230220</creationdate><title>Solving Recurrent MIPs with Semi-supervised Graph Neural Networks</title><author>Benidis, Konstantinos ; Rosolia, Ugo ; Rangapuram, Syama ; Iosifidis, George ; Paschos, Georgios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27795564313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Exact solutions</topic><topic>Graph neural networks</topic><topic>Optimization</topic><topic>Route planning</topic><toplevel>online_resources</toplevel><creatorcontrib>Benidis, Konstantinos</creatorcontrib><creatorcontrib>Rosolia, Ugo</creatorcontrib><creatorcontrib>Rangapuram, Syama</creatorcontrib><creatorcontrib>Iosifidis, George</creatorcontrib><creatorcontrib>Paschos, Georgios</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benidis, Konstantinos</au><au>Rosolia, Ugo</au><au>Rangapuram, Syama</au><au>Iosifidis, George</au><au>Paschos, Georgios</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Solving Recurrent MIPs with Semi-supervised Graph Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2023-02-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose an ML-based model that automates and expedites the solution of MIPs by predicting the values of variables. Our approach is motivated by the observation that many problem instances share salient features and solution structures since they differ only in few (time-varying) parameters. Examples include transportation and routing problems where decisions need to be re-optimized whenever commodity volumes or link costs change. Our method is the first to exploit the sequential nature of the instances being solved periodically, and can be trained with ``unlabeled'' instances, when exact solutions are unavailable, in a semi-supervised setting. Also, we provide a principled way of transforming the probabilistic predictions into integral solutions. Using a battery of experiments with representative binary MIPs, we show the gains of our model over other ML-based optimization approaches.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2779556431
source Free E- Journals
subjects Exact solutions
Graph neural networks
Optimization
Route planning
title Solving Recurrent MIPs with Semi-supervised Graph Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Solving%20Recurrent%20MIPs%20with%20Semi-supervised%20Graph%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Benidis,%20Konstantinos&rft.date=2023-02-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2779556431%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779556431&rft_id=info:pmid/&rfr_iscdi=true