Deciphering the Thermal Failure Mechanism of Anode‐Free Lithium Metal Pouch Batteries

Anode‐free lithium metal batteries (AFLMBs) are the subject of increasing attention due to their ultrahigh energy density, simplified structure, reduced cost, and relatively high safety, but their thermal runaway performance under abuse conditions has been rarely explored, and a clear understanding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-02, Vol.13 (8), p.n/a
Hauptverfasser: Zhang, Xiaohu, Huang, Lang, Xie, Bin, Zhang, Shenghang, Jiang, Zhaoxuan, Xu, Gaojie, Li, Jiedong, Cui, Guanglei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Advanced energy materials
container_volume 13
creator Zhang, Xiaohu
Huang, Lang
Xie, Bin
Zhang, Shenghang
Jiang, Zhaoxuan
Xu, Gaojie
Li, Jiedong
Cui, Guanglei
description Anode‐free lithium metal batteries (AFLMBs) are the subject of increasing attention due to their ultrahigh energy density, simplified structure, reduced cost, and relatively high safety, but their thermal runaway performance under abuse conditions has been rarely explored, and a clear understanding of whether the absence of a highly‐reactive lithium metal anode is equal to thermal runaway free remains elusive. Herein, by systematically examining the thermal runaway characteristics of a 2.0 Ah AFLMB, it is revealed that under elevated temperatures, discharged anode‐free pouch cell is safe while the fully‐charged one indeed undergoes thermal runaway, but with a milder intensity than that of a lithium metal battery with the same capacity. Moreover, mechanistic investigations demonstrate that thermal runaway of an AFLMB employing a conventional electrolyte is triggered and dominated by anode‐induced exothermic interactions and the broken separator induced electrodes interaction. Moreover, it is shown for the first time that adding fluoroethylene carbonate in an electrolyte leads to ring‐opening repolymerization at 170 °C to form a thermal‐stable solid layer between anode and cathode, which inhibits the direct contact of electrodes and effectively postpones violent self‐heating. This comprehensive exploration of thermal runaway characteristics and mechanisms of large format AFLMBs sheds fresh light on developing high energy density and safety‐enhanced lithium metal batteries. Fully charged anode‐free lithium metal batteries undergo thermal runaway triggered by anode‐induced interactions in thermal abused conditions. It is shown that at high temperatures, fluoroethylene carbonate in electrolyte undergo re‐polymerization with lithium salts and form a thermally stable coating layer attached to the cathode, inhibiting the direct contact of anode and cathode and consequently improving the thermal safety of the pouch cell battery.
doi_str_mv 10.1002/aenm.202203648
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779534474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779534474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-5a7438cea1548d8b45ada0b3b140befb2d70448453fceb3ceccf79d9d6c4d8d43</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EElXpymyJOcWOncQZS2kBKQWGIkbLsW-Iq_wUOxHqxiPwjDwJqYrKyF3OGb5zrnQQuqRkSgkJrxU09TQkYUhYzMUJGtGY8iAWnJwePQvP0cT7DRmOp5QwNkKvt6DttgRnmzfclYDXg69VhZfKVr0DvAJdqsb6GrcFnjWtge_Pr6UDwJntStvXA9EN_HPb6xLfqK4busBfoLNCVR4mvzpGL8vFen4fZE93D_NZFmhGExFEKuFMaFA04sKInEfKKJKznHKSQ5GHJiGcCx6xQkPONGhdJKlJTay5EYazMbo69G5d-96D7-Sm7V0zvJRhkqQR4zzZU9MDpV3rvYNCbp2tldtJSuR-P7nfTx73GwLpIfBhK9j9Q8vZ4nH1l_0B_ed1XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779534474</pqid></control><display><type>article</type><title>Deciphering the Thermal Failure Mechanism of Anode‐Free Lithium Metal Pouch Batteries</title><source>Access via Wiley Online Library</source><creator>Zhang, Xiaohu ; Huang, Lang ; Xie, Bin ; Zhang, Shenghang ; Jiang, Zhaoxuan ; Xu, Gaojie ; Li, Jiedong ; Cui, Guanglei</creator><creatorcontrib>Zhang, Xiaohu ; Huang, Lang ; Xie, Bin ; Zhang, Shenghang ; Jiang, Zhaoxuan ; Xu, Gaojie ; Li, Jiedong ; Cui, Guanglei</creatorcontrib><description>Anode‐free lithium metal batteries (AFLMBs) are the subject of increasing attention due to their ultrahigh energy density, simplified structure, reduced cost, and relatively high safety, but their thermal runaway performance under abuse conditions has been rarely explored, and a clear understanding of whether the absence of a highly‐reactive lithium metal anode is equal to thermal runaway free remains elusive. Herein, by systematically examining the thermal runaway characteristics of a 2.0 Ah AFLMB, it is revealed that under elevated temperatures, discharged anode‐free pouch cell is safe while the fully‐charged one indeed undergoes thermal runaway, but with a milder intensity than that of a lithium metal battery with the same capacity. Moreover, mechanistic investigations demonstrate that thermal runaway of an AFLMB employing a conventional electrolyte is triggered and dominated by anode‐induced exothermic interactions and the broken separator induced electrodes interaction. Moreover, it is shown for the first time that adding fluoroethylene carbonate in an electrolyte leads to ring‐opening repolymerization at 170 °C to form a thermal‐stable solid layer between anode and cathode, which inhibits the direct contact of electrodes and effectively postpones violent self‐heating. This comprehensive exploration of thermal runaway characteristics and mechanisms of large format AFLMBs sheds fresh light on developing high energy density and safety‐enhanced lithium metal batteries. Fully charged anode‐free lithium metal batteries undergo thermal runaway triggered by anode‐induced interactions in thermal abused conditions. It is shown that at high temperatures, fluoroethylene carbonate in electrolyte undergo re‐polymerization with lithium salts and form a thermally stable coating layer attached to the cathode, inhibiting the direct contact of anode and cathode and consequently improving the thermal safety of the pouch cell battery.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202203648</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>anode free batteries ; dual salts electrolytes ; Electrodes ; Electrolytes ; Exothermic reactions ; Failure mechanisms ; High temperature ; internal short circuits ; Lithium ; Lithium batteries ; lithium metal anodes ; Safety ; Thermal runaway</subject><ispartof>Advanced energy materials, 2023-02, Vol.13 (8), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-5a7438cea1548d8b45ada0b3b140befb2d70448453fceb3ceccf79d9d6c4d8d43</citedby><cites>FETCH-LOGICAL-c3178-5a7438cea1548d8b45ada0b3b140befb2d70448453fceb3ceccf79d9d6c4d8d43</cites><orcidid>0000-0001-5987-7569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202203648$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202203648$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids></links><search><creatorcontrib>Zhang, Xiaohu</creatorcontrib><creatorcontrib>Huang, Lang</creatorcontrib><creatorcontrib>Xie, Bin</creatorcontrib><creatorcontrib>Zhang, Shenghang</creatorcontrib><creatorcontrib>Jiang, Zhaoxuan</creatorcontrib><creatorcontrib>Xu, Gaojie</creatorcontrib><creatorcontrib>Li, Jiedong</creatorcontrib><creatorcontrib>Cui, Guanglei</creatorcontrib><title>Deciphering the Thermal Failure Mechanism of Anode‐Free Lithium Metal Pouch Batteries</title><title>Advanced energy materials</title><description>Anode‐free lithium metal batteries (AFLMBs) are the subject of increasing attention due to their ultrahigh energy density, simplified structure, reduced cost, and relatively high safety, but their thermal runaway performance under abuse conditions has been rarely explored, and a clear understanding of whether the absence of a highly‐reactive lithium metal anode is equal to thermal runaway free remains elusive. Herein, by systematically examining the thermal runaway characteristics of a 2.0 Ah AFLMB, it is revealed that under elevated temperatures, discharged anode‐free pouch cell is safe while the fully‐charged one indeed undergoes thermal runaway, but with a milder intensity than that of a lithium metal battery with the same capacity. Moreover, mechanistic investigations demonstrate that thermal runaway of an AFLMB employing a conventional electrolyte is triggered and dominated by anode‐induced exothermic interactions and the broken separator induced electrodes interaction. Moreover, it is shown for the first time that adding fluoroethylene carbonate in an electrolyte leads to ring‐opening repolymerization at 170 °C to form a thermal‐stable solid layer between anode and cathode, which inhibits the direct contact of electrodes and effectively postpones violent self‐heating. This comprehensive exploration of thermal runaway characteristics and mechanisms of large format AFLMBs sheds fresh light on developing high energy density and safety‐enhanced lithium metal batteries. Fully charged anode‐free lithium metal batteries undergo thermal runaway triggered by anode‐induced interactions in thermal abused conditions. It is shown that at high temperatures, fluoroethylene carbonate in electrolyte undergo re‐polymerization with lithium salts and form a thermally stable coating layer attached to the cathode, inhibiting the direct contact of anode and cathode and consequently improving the thermal safety of the pouch cell battery.</description><subject>anode free batteries</subject><subject>dual salts electrolytes</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Exothermic reactions</subject><subject>Failure mechanisms</subject><subject>High temperature</subject><subject>internal short circuits</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium metal anodes</subject><subject>Safety</subject><subject>Thermal runaway</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EElXpymyJOcWOncQZS2kBKQWGIkbLsW-Iq_wUOxHqxiPwjDwJqYrKyF3OGb5zrnQQuqRkSgkJrxU09TQkYUhYzMUJGtGY8iAWnJwePQvP0cT7DRmOp5QwNkKvt6DttgRnmzfclYDXg69VhZfKVr0DvAJdqsb6GrcFnjWtge_Pr6UDwJntStvXA9EN_HPb6xLfqK4busBfoLNCVR4mvzpGL8vFen4fZE93D_NZFmhGExFEKuFMaFA04sKInEfKKJKznHKSQ5GHJiGcCx6xQkPONGhdJKlJTay5EYazMbo69G5d-96D7-Sm7V0zvJRhkqQR4zzZU9MDpV3rvYNCbp2tldtJSuR-P7nfTx73GwLpIfBhK9j9Q8vZ4nH1l_0B_ed1XQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhang, Xiaohu</creator><creator>Huang, Lang</creator><creator>Xie, Bin</creator><creator>Zhang, Shenghang</creator><creator>Jiang, Zhaoxuan</creator><creator>Xu, Gaojie</creator><creator>Li, Jiedong</creator><creator>Cui, Guanglei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5987-7569</orcidid></search><sort><creationdate>20230201</creationdate><title>Deciphering the Thermal Failure Mechanism of Anode‐Free Lithium Metal Pouch Batteries</title><author>Zhang, Xiaohu ; Huang, Lang ; Xie, Bin ; Zhang, Shenghang ; Jiang, Zhaoxuan ; Xu, Gaojie ; Li, Jiedong ; Cui, Guanglei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-5a7438cea1548d8b45ada0b3b140befb2d70448453fceb3ceccf79d9d6c4d8d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anode free batteries</topic><topic>dual salts electrolytes</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Exothermic reactions</topic><topic>Failure mechanisms</topic><topic>High temperature</topic><topic>internal short circuits</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium metal anodes</topic><topic>Safety</topic><topic>Thermal runaway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaohu</creatorcontrib><creatorcontrib>Huang, Lang</creatorcontrib><creatorcontrib>Xie, Bin</creatorcontrib><creatorcontrib>Zhang, Shenghang</creatorcontrib><creatorcontrib>Jiang, Zhaoxuan</creatorcontrib><creatorcontrib>Xu, Gaojie</creatorcontrib><creatorcontrib>Li, Jiedong</creatorcontrib><creatorcontrib>Cui, Guanglei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaohu</au><au>Huang, Lang</au><au>Xie, Bin</au><au>Zhang, Shenghang</au><au>Jiang, Zhaoxuan</au><au>Xu, Gaojie</au><au>Li, Jiedong</au><au>Cui, Guanglei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering the Thermal Failure Mechanism of Anode‐Free Lithium Metal Pouch Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>13</volume><issue>8</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Anode‐free lithium metal batteries (AFLMBs) are the subject of increasing attention due to their ultrahigh energy density, simplified structure, reduced cost, and relatively high safety, but their thermal runaway performance under abuse conditions has been rarely explored, and a clear understanding of whether the absence of a highly‐reactive lithium metal anode is equal to thermal runaway free remains elusive. Herein, by systematically examining the thermal runaway characteristics of a 2.0 Ah AFLMB, it is revealed that under elevated temperatures, discharged anode‐free pouch cell is safe while the fully‐charged one indeed undergoes thermal runaway, but with a milder intensity than that of a lithium metal battery with the same capacity. Moreover, mechanistic investigations demonstrate that thermal runaway of an AFLMB employing a conventional electrolyte is triggered and dominated by anode‐induced exothermic interactions and the broken separator induced electrodes interaction. Moreover, it is shown for the first time that adding fluoroethylene carbonate in an electrolyte leads to ring‐opening repolymerization at 170 °C to form a thermal‐stable solid layer between anode and cathode, which inhibits the direct contact of electrodes and effectively postpones violent self‐heating. This comprehensive exploration of thermal runaway characteristics and mechanisms of large format AFLMBs sheds fresh light on developing high energy density and safety‐enhanced lithium metal batteries. Fully charged anode‐free lithium metal batteries undergo thermal runaway triggered by anode‐induced interactions in thermal abused conditions. It is shown that at high temperatures, fluoroethylene carbonate in electrolyte undergo re‐polymerization with lithium salts and form a thermally stable coating layer attached to the cathode, inhibiting the direct contact of anode and cathode and consequently improving the thermal safety of the pouch cell battery.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202203648</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5987-7569</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-02, Vol.13 (8), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2779534474
source Access via Wiley Online Library
subjects anode free batteries
dual salts electrolytes
Electrodes
Electrolytes
Exothermic reactions
Failure mechanisms
High temperature
internal short circuits
Lithium
Lithium batteries
lithium metal anodes
Safety
Thermal runaway
title Deciphering the Thermal Failure Mechanism of Anode‐Free Lithium Metal Pouch Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T17%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20the%20Thermal%20Failure%20Mechanism%20of%20Anode%E2%80%90Free%20Lithium%20Metal%20Pouch%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Zhang,%20Xiaohu&rft.date=2023-02-01&rft.volume=13&rft.issue=8&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202203648&rft_dat=%3Cproquest_cross%3E2779534474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779534474&rft_id=info:pmid/&rfr_iscdi=true