The PtM/C (M = Co, Ni, Cu, Ru) Electrocatalysts: Their Synthesis, Structure, Activity in the Oxygen Reduction and Methanol Oxidation Reactions, and Durability

PtM/C (M = Co, Ni, Cu, Ru) catalysts were prepared by wet-synthesis methods. The composition and structure of the synthesized materials were estimated by TXRF, XRD, TEM, HAADF-STEM, EDX, and TGA/DSC methods. According to the CV and LSV methods, the PtCu/C material is characterized by the highest act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2023-02, Vol.13 (2), p.243
Hauptverfasser: Belenov, Sergey, Pavlets, Angelina, Paperzh, Kirill, Mauer, Dmitry, Menshikov, Vladislav, Alekseenko, Anastasia, Pankov, Ilia, Tolstunov, Mikhail, Guterman, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PtM/C (M = Co, Ni, Cu, Ru) catalysts were prepared by wet-synthesis methods. The composition and structure of the synthesized materials were estimated by TXRF, XRD, TEM, HAADF-STEM, EDX, and TGA/DSC methods. According to the CV and LSV methods, the PtCu/C material is characterized by the highest activity in the ORR compared to the other materials studied. The PtRu/C catalysts also exhibit the highest activity in the MOR. Studying the durability of the obtained bimetallic catalysts using accelerated stress testing has allowed for the detection of the most promising materials, whose characteristics would be superior to those of the commercial Pt/C analog. This study has shown that wet-synthesis methods allow obtaining bimetallic catalysts characterized by higher activity and enhanced durability. This research also indicates that special attention should be given to the possibility of scaling these synthesis techniques, which makes the aforementioned catalysts promising for commercial applications.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal13020243