A Multi-Channel Contrastive Learning Network Based Intrusion Detection Method
Network intrusion data are characterized by high feature dimensionality, extreme category imbalance, and complex nonlinear relationships between features and categories. The actual detection accuracy of existing supervised intrusion-detection models performs poorly. To address this problem, this pap...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-02, Vol.12 (4), p.949 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 949 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Luo, Jian Zhang, Yiying Wu, Yannian Xu, Yao Guo, Xiaoyan Shang, Boxiang |
description | Network intrusion data are characterized by high feature dimensionality, extreme category imbalance, and complex nonlinear relationships between features and categories. The actual detection accuracy of existing supervised intrusion-detection models performs poorly. To address this problem, this paper proposes a multi-channel contrastive learning network-based intrusion-detection method (MCLDM), which combines feature learning in the multi-channel supervised contrastive learning stage and feature extraction in the multi-channel unsupervised contrastive learning stage to train an effective intrusion-detection model. The objective is to research whether feature enrichment and the use of contrastive learning for specific classes of network intrusion data can improve the accuracy of the model. The model is based on an autoencoder to achieve feature reconstruction with supervised contrastive learning and for implementing multi-channel data reconstruction. In the next stage of unsupervised contrastive learning, the extraction of features is implemented using triplet convolutional neural networks (TCNN) to achieve the classification of intrusion data. Through experimental analysis, the multichannel contrastive learning network-based intrusion-detection method achieves 98.43% accuracy in dataset CICIDS17 and 93.94% accuracy in dataset KDDCUP99. |
doi_str_mv | 10.3390/electronics12040949 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2779528374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743140214</galeid><sourcerecordid>A743140214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-bc20b51d49512f735a3958711ea16373068bcaae29b32deecee9a9c5f53d87323</originalsourceid><addsrcrecordid>eNptUMtOwzAQtBBIVNAv4BKJc4rtTer4WMKrUgsXOEeOs2ldUrvYLoi_x1U5cGD3sKPVzI52CLlidAIg6Q0OqKN31ujAOC2oLOQJGXEqZC655Kd_8DkZh7ChqSSDCuiILGfZcj9Ek9drZS0OWe1s9CpE84nZApW3xq6yZ4xfzr9ntypgl80TYx-Ms9kdxuR9QEuMa9ddkrNeDQHHv_OCvD3cv9ZP-eLlcV7PFrmGKYt5qzltS9YVsmS8F1AqkGUlGEPFpiCATqtWK4VctsA7RI0oldRlX0JXCeBwQa6Pd3fefewxxGbj9t4my4YLIUtegSgSa3JkrdSAjbG9S5_p1B1ujXYWe5P2s8RkBeXsIICjQHsXgse-2XmzVf67YbQ5ZN38kzX8AF-_dGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779528374</pqid></control><display><type>article</type><title>A Multi-Channel Contrastive Learning Network Based Intrusion Detection Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Luo, Jian ; Zhang, Yiying ; Wu, Yannian ; Xu, Yao ; Guo, Xiaoyan ; Shang, Boxiang</creator><creatorcontrib>Luo, Jian ; Zhang, Yiying ; Wu, Yannian ; Xu, Yao ; Guo, Xiaoyan ; Shang, Boxiang</creatorcontrib><description>Network intrusion data are characterized by high feature dimensionality, extreme category imbalance, and complex nonlinear relationships between features and categories. The actual detection accuracy of existing supervised intrusion-detection models performs poorly. To address this problem, this paper proposes a multi-channel contrastive learning network-based intrusion-detection method (MCLDM), which combines feature learning in the multi-channel supervised contrastive learning stage and feature extraction in the multi-channel unsupervised contrastive learning stage to train an effective intrusion-detection model. The objective is to research whether feature enrichment and the use of contrastive learning for specific classes of network intrusion data can improve the accuracy of the model. The model is based on an autoencoder to achieve feature reconstruction with supervised contrastive learning and for implementing multi-channel data reconstruction. In the next stage of unsupervised contrastive learning, the extraction of features is implemented using triplet convolutional neural networks (TCNN) to achieve the classification of intrusion data. Through experimental analysis, the multichannel contrastive learning network-based intrusion-detection method achieves 98.43% accuracy in dataset CICIDS17 and 93.94% accuracy in dataset KDDCUP99.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12040949</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Classification ; Computer crimes ; Data security ; Datasets ; Deep learning ; Electronic data processing ; False alarms ; Feature extraction ; Intrusion ; Machine learning ; Methods ; Model accuracy ; Neural networks ; Prevention ; Reconstruction</subject><ispartof>Electronics (Basel), 2023-02, Vol.12 (4), p.949</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-bc20b51d49512f735a3958711ea16373068bcaae29b32deecee9a9c5f53d87323</citedby><cites>FETCH-LOGICAL-c361t-bc20b51d49512f735a3958711ea16373068bcaae29b32deecee9a9c5f53d87323</cites><orcidid>0000-0002-9219-2921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Luo, Jian</creatorcontrib><creatorcontrib>Zhang, Yiying</creatorcontrib><creatorcontrib>Wu, Yannian</creatorcontrib><creatorcontrib>Xu, Yao</creatorcontrib><creatorcontrib>Guo, Xiaoyan</creatorcontrib><creatorcontrib>Shang, Boxiang</creatorcontrib><title>A Multi-Channel Contrastive Learning Network Based Intrusion Detection Method</title><title>Electronics (Basel)</title><description>Network intrusion data are characterized by high feature dimensionality, extreme category imbalance, and complex nonlinear relationships between features and categories. The actual detection accuracy of existing supervised intrusion-detection models performs poorly. To address this problem, this paper proposes a multi-channel contrastive learning network-based intrusion-detection method (MCLDM), which combines feature learning in the multi-channel supervised contrastive learning stage and feature extraction in the multi-channel unsupervised contrastive learning stage to train an effective intrusion-detection model. The objective is to research whether feature enrichment and the use of contrastive learning for specific classes of network intrusion data can improve the accuracy of the model. The model is based on an autoencoder to achieve feature reconstruction with supervised contrastive learning and for implementing multi-channel data reconstruction. In the next stage of unsupervised contrastive learning, the extraction of features is implemented using triplet convolutional neural networks (TCNN) to achieve the classification of intrusion data. Through experimental analysis, the multichannel contrastive learning network-based intrusion-detection method achieves 98.43% accuracy in dataset CICIDS17 and 93.94% accuracy in dataset KDDCUP99.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer crimes</subject><subject>Data security</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Electronic data processing</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Intrusion</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Prevention</subject><subject>Reconstruction</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUMtOwzAQtBBIVNAv4BKJc4rtTer4WMKrUgsXOEeOs2ldUrvYLoi_x1U5cGD3sKPVzI52CLlidAIg6Q0OqKN31ujAOC2oLOQJGXEqZC655Kd_8DkZh7ChqSSDCuiILGfZcj9Ek9drZS0OWe1s9CpE84nZApW3xq6yZ4xfzr9ntypgl80TYx-Ms9kdxuR9QEuMa9ddkrNeDQHHv_OCvD3cv9ZP-eLlcV7PFrmGKYt5qzltS9YVsmS8F1AqkGUlGEPFpiCATqtWK4VctsA7RI0oldRlX0JXCeBwQa6Pd3fefewxxGbj9t4my4YLIUtegSgSa3JkrdSAjbG9S5_p1B1ujXYWe5P2s8RkBeXsIICjQHsXgse-2XmzVf67YbQ5ZN38kzX8AF-_dGE</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Luo, Jian</creator><creator>Zhang, Yiying</creator><creator>Wu, Yannian</creator><creator>Xu, Yao</creator><creator>Guo, Xiaoyan</creator><creator>Shang, Boxiang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9219-2921</orcidid></search><sort><creationdate>20230201</creationdate><title>A Multi-Channel Contrastive Learning Network Based Intrusion Detection Method</title><author>Luo, Jian ; Zhang, Yiying ; Wu, Yannian ; Xu, Yao ; Guo, Xiaoyan ; Shang, Boxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-bc20b51d49512f735a3958711ea16373068bcaae29b32deecee9a9c5f53d87323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer crimes</topic><topic>Data security</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Electronic data processing</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Intrusion</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Prevention</topic><topic>Reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jian</creatorcontrib><creatorcontrib>Zhang, Yiying</creatorcontrib><creatorcontrib>Wu, Yannian</creatorcontrib><creatorcontrib>Xu, Yao</creatorcontrib><creatorcontrib>Guo, Xiaoyan</creatorcontrib><creatorcontrib>Shang, Boxiang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jian</au><au>Zhang, Yiying</au><au>Wu, Yannian</au><au>Xu, Yao</au><au>Guo, Xiaoyan</au><au>Shang, Boxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Channel Contrastive Learning Network Based Intrusion Detection Method</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>12</volume><issue>4</issue><spage>949</spage><pages>949-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Network intrusion data are characterized by high feature dimensionality, extreme category imbalance, and complex nonlinear relationships between features and categories. The actual detection accuracy of existing supervised intrusion-detection models performs poorly. To address this problem, this paper proposes a multi-channel contrastive learning network-based intrusion-detection method (MCLDM), which combines feature learning in the multi-channel supervised contrastive learning stage and feature extraction in the multi-channel unsupervised contrastive learning stage to train an effective intrusion-detection model. The objective is to research whether feature enrichment and the use of contrastive learning for specific classes of network intrusion data can improve the accuracy of the model. The model is based on an autoencoder to achieve feature reconstruction with supervised contrastive learning and for implementing multi-channel data reconstruction. In the next stage of unsupervised contrastive learning, the extraction of features is implemented using triplet convolutional neural networks (TCNN) to achieve the classification of intrusion data. Through experimental analysis, the multichannel contrastive learning network-based intrusion-detection method achieves 98.43% accuracy in dataset CICIDS17 and 93.94% accuracy in dataset KDDCUP99.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12040949</doi><orcidid>https://orcid.org/0000-0002-9219-2921</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-02, Vol.12 (4), p.949 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2779528374 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Accuracy Algorithms Artificial neural networks Classification Computer crimes Data security Datasets Deep learning Electronic data processing False alarms Feature extraction Intrusion Machine learning Methods Model accuracy Neural networks Prevention Reconstruction |
title | A Multi-Channel Contrastive Learning Network Based Intrusion Detection Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Channel%20Contrastive%20Learning%20Network%20Based%20Intrusion%20Detection%20Method&rft.jtitle=Electronics%20(Basel)&rft.au=Luo,%20Jian&rft.date=2023-02-01&rft.volume=12&rft.issue=4&rft.spage=949&rft.pages=949-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12040949&rft_dat=%3Cgale_proqu%3EA743140214%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779528374&rft_id=info:pmid/&rft_galeid=A743140214&rfr_iscdi=true |