Comparing the Sustainability of Different Powertrains for Urban Use
The real environment impacts the fuel and energy consumption of any vehicle: technology, physical and social phenomena, traffic, drivers’ behaviour, and so on; many of them are difficult to quantify. The authors’ methodology was used to test the real impact of vehicles in “standard” urban conditions...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-02, Vol.12 (4), p.941 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 941 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Cignini, Fabio Alessandrini, Adriano Ortenzi, Fernando Orecchini, Fabio Santiangeli, Adriano Zuccari, Fabrizio |
description | The real environment impacts the fuel and energy consumption of any vehicle: technology, physical and social phenomena, traffic, drivers’ behaviour, and so on; many of them are difficult to quantify. The authors’ methodology was used to test the real impact of vehicles in “standard” urban conditions, and many generations of hybrid powertrains are compared. One of the latest performance indexes is the percentage of time the vehicle runs with zero emissions (ZEV). For example, the hybrid vehicle tested ran up to 80% with no emissions and fuel consumption below 3 L per 100 km. A few energy performance indicators were compared between five vehicles: one battery electric vehicle (BEV), two hybrid gasoline–electric vehicles (HEVs), and two traditional vehicles (one diesel and one gasoline). Their potential to use only renewable energy is unrivalled, but today’s vehicles’ performances favour hybrid power trains. This paper summarises the most sustainable powertrain for urban use by comparing experimental data from on-road testing. It also evaluates the benefits of reducing emissions by forecasting the Italian car fleet of 2025 and three use cases of the evolution of car fleets, with a focus on Rome. |
doi_str_mv | 10.3390/electronics12040941 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2779528246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743140206</galeid><sourcerecordid>A743140206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-783dc90035a2c0685086065959db964c5ba5951aa2a16a18d379e2823d24a5993</originalsourceid><addsrcrecordid>eNptUEtLAzEQDqJgqf0FXgKet04e-8ixrI8KBQXteclmk5qyTWqSIv33ptSDB2cO8_q-meFD6JbAnDEB93rUKgXvrIqEAgfByQWaUKhFIaigl3_yazSLcQvZBGENgwlqW7_by2DdBqdPjd8PMUnrZG9Hm47YG_xgjdFBu4Tf_LcOKeRxxMYHvA69dHgd9Q26MnKMevYbp2j99PjRLovV6_NLu1gVihGSirphgxIArJRUQdWU0FRQlaIUQy8qrspe5oJISSWpJGkGVgtNG8oGyvNEsCm6O-_dB_910DF1W38ILp_saF2LMmN5lVHzM2ojR91ZZ3z-WWUf9M4q77Sxub-oOSMcKJwI7ExQwccYtOn2we5kOHYEupPC3T8Ksx-3V2-h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779528246</pqid></control><display><type>article</type><title>Comparing the Sustainability of Different Powertrains for Urban Use</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cignini, Fabio ; Alessandrini, Adriano ; Ortenzi, Fernando ; Orecchini, Fabio ; Santiangeli, Adriano ; Zuccari, Fabrizio</creator><creatorcontrib>Cignini, Fabio ; Alessandrini, Adriano ; Ortenzi, Fernando ; Orecchini, Fabio ; Santiangeli, Adriano ; Zuccari, Fabrizio</creatorcontrib><description>The real environment impacts the fuel and energy consumption of any vehicle: technology, physical and social phenomena, traffic, drivers’ behaviour, and so on; many of them are difficult to quantify. The authors’ methodology was used to test the real impact of vehicles in “standard” urban conditions, and many generations of hybrid powertrains are compared. One of the latest performance indexes is the percentage of time the vehicle runs with zero emissions (ZEV). For example, the hybrid vehicle tested ran up to 80% with no emissions and fuel consumption below 3 L per 100 km. A few energy performance indicators were compared between five vehicles: one battery electric vehicle (BEV), two hybrid gasoline–electric vehicles (HEVs), and two traditional vehicles (one diesel and one gasoline). Their potential to use only renewable energy is unrivalled, but today’s vehicles’ performances favour hybrid power trains. This paper summarises the most sustainable powertrain for urban use by comparing experimental data from on-road testing. It also evaluates the benefits of reducing emissions by forecasting the Italian car fleet of 2025 and three use cases of the evolution of car fleets, with a focus on Rome.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12040941</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air quality management ; Alternative energy sources ; Analysis ; Automobile fleets ; Automobiles ; Carbon dioxide ; Case studies ; Climate change ; Diesel fuels ; Electric vehicles ; Electricity ; Emissions ; Energy consumption ; Environmental aspects ; Fuel consumption ; Gasoline ; Greenhouse gases ; Hybrid vehicles ; Hypotheses ; Infrastructure ; Performance evaluation ; Performance indices ; Pollutants ; Power trains ; Powertrain ; Sustainable development ; VOCs ; Volatile organic compounds</subject><ispartof>Electronics (Basel), 2023-02, Vol.12 (4), p.941</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-783dc90035a2c0685086065959db964c5ba5951aa2a16a18d379e2823d24a5993</cites><orcidid>0000-0002-3595-6614 ; 0000-0002-1348-6682 ; 0000-0002-8302-2250 ; 0000-0002-3247-1363 ; 0000-0001-6702-6211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cignini, Fabio</creatorcontrib><creatorcontrib>Alessandrini, Adriano</creatorcontrib><creatorcontrib>Ortenzi, Fernando</creatorcontrib><creatorcontrib>Orecchini, Fabio</creatorcontrib><creatorcontrib>Santiangeli, Adriano</creatorcontrib><creatorcontrib>Zuccari, Fabrizio</creatorcontrib><title>Comparing the Sustainability of Different Powertrains for Urban Use</title><title>Electronics (Basel)</title><description>The real environment impacts the fuel and energy consumption of any vehicle: technology, physical and social phenomena, traffic, drivers’ behaviour, and so on; many of them are difficult to quantify. The authors’ methodology was used to test the real impact of vehicles in “standard” urban conditions, and many generations of hybrid powertrains are compared. One of the latest performance indexes is the percentage of time the vehicle runs with zero emissions (ZEV). For example, the hybrid vehicle tested ran up to 80% with no emissions and fuel consumption below 3 L per 100 km. A few energy performance indicators were compared between five vehicles: one battery electric vehicle (BEV), two hybrid gasoline–electric vehicles (HEVs), and two traditional vehicles (one diesel and one gasoline). Their potential to use only renewable energy is unrivalled, but today’s vehicles’ performances favour hybrid power trains. This paper summarises the most sustainable powertrain for urban use by comparing experimental data from on-road testing. It also evaluates the benefits of reducing emissions by forecasting the Italian car fleet of 2025 and three use cases of the evolution of car fleets, with a focus on Rome.</description><subject>Air quality management</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Automobile fleets</subject><subject>Automobiles</subject><subject>Carbon dioxide</subject><subject>Case studies</subject><subject>Climate change</subject><subject>Diesel fuels</subject><subject>Electric vehicles</subject><subject>Electricity</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Environmental aspects</subject><subject>Fuel consumption</subject><subject>Gasoline</subject><subject>Greenhouse gases</subject><subject>Hybrid vehicles</subject><subject>Hypotheses</subject><subject>Infrastructure</subject><subject>Performance evaluation</subject><subject>Performance indices</subject><subject>Pollutants</subject><subject>Power trains</subject><subject>Powertrain</subject><subject>Sustainable development</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUEtLAzEQDqJgqf0FXgKet04e-8ixrI8KBQXteclmk5qyTWqSIv33ptSDB2cO8_q-meFD6JbAnDEB93rUKgXvrIqEAgfByQWaUKhFIaigl3_yazSLcQvZBGENgwlqW7_by2DdBqdPjd8PMUnrZG9Hm47YG_xgjdFBu4Tf_LcOKeRxxMYHvA69dHgd9Q26MnKMevYbp2j99PjRLovV6_NLu1gVihGSirphgxIArJRUQdWU0FRQlaIUQy8qrspe5oJISSWpJGkGVgtNG8oGyvNEsCm6O-_dB_910DF1W38ILp_saF2LMmN5lVHzM2ojR91ZZ3z-WWUf9M4q77Sxub-oOSMcKJwI7ExQwccYtOn2we5kOHYEupPC3T8Ksx-3V2-h</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Cignini, Fabio</creator><creator>Alessandrini, Adriano</creator><creator>Ortenzi, Fernando</creator><creator>Orecchini, Fabio</creator><creator>Santiangeli, Adriano</creator><creator>Zuccari, Fabrizio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3595-6614</orcidid><orcidid>https://orcid.org/0000-0002-1348-6682</orcidid><orcidid>https://orcid.org/0000-0002-8302-2250</orcidid><orcidid>https://orcid.org/0000-0002-3247-1363</orcidid><orcidid>https://orcid.org/0000-0001-6702-6211</orcidid></search><sort><creationdate>20230201</creationdate><title>Comparing the Sustainability of Different Powertrains for Urban Use</title><author>Cignini, Fabio ; Alessandrini, Adriano ; Ortenzi, Fernando ; Orecchini, Fabio ; Santiangeli, Adriano ; Zuccari, Fabrizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-783dc90035a2c0685086065959db964c5ba5951aa2a16a18d379e2823d24a5993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air quality management</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Automobile fleets</topic><topic>Automobiles</topic><topic>Carbon dioxide</topic><topic>Case studies</topic><topic>Climate change</topic><topic>Diesel fuels</topic><topic>Electric vehicles</topic><topic>Electricity</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Environmental aspects</topic><topic>Fuel consumption</topic><topic>Gasoline</topic><topic>Greenhouse gases</topic><topic>Hybrid vehicles</topic><topic>Hypotheses</topic><topic>Infrastructure</topic><topic>Performance evaluation</topic><topic>Performance indices</topic><topic>Pollutants</topic><topic>Power trains</topic><topic>Powertrain</topic><topic>Sustainable development</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cignini, Fabio</creatorcontrib><creatorcontrib>Alessandrini, Adriano</creatorcontrib><creatorcontrib>Ortenzi, Fernando</creatorcontrib><creatorcontrib>Orecchini, Fabio</creatorcontrib><creatorcontrib>Santiangeli, Adriano</creatorcontrib><creatorcontrib>Zuccari, Fabrizio</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cignini, Fabio</au><au>Alessandrini, Adriano</au><au>Ortenzi, Fernando</au><au>Orecchini, Fabio</au><au>Santiangeli, Adriano</au><au>Zuccari, Fabrizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing the Sustainability of Different Powertrains for Urban Use</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>12</volume><issue>4</issue><spage>941</spage><pages>941-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The real environment impacts the fuel and energy consumption of any vehicle: technology, physical and social phenomena, traffic, drivers’ behaviour, and so on; many of them are difficult to quantify. The authors’ methodology was used to test the real impact of vehicles in “standard” urban conditions, and many generations of hybrid powertrains are compared. One of the latest performance indexes is the percentage of time the vehicle runs with zero emissions (ZEV). For example, the hybrid vehicle tested ran up to 80% with no emissions and fuel consumption below 3 L per 100 km. A few energy performance indicators were compared between five vehicles: one battery electric vehicle (BEV), two hybrid gasoline–electric vehicles (HEVs), and two traditional vehicles (one diesel and one gasoline). Their potential to use only renewable energy is unrivalled, but today’s vehicles’ performances favour hybrid power trains. This paper summarises the most sustainable powertrain for urban use by comparing experimental data from on-road testing. It also evaluates the benefits of reducing emissions by forecasting the Italian car fleet of 2025 and three use cases of the evolution of car fleets, with a focus on Rome.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12040941</doi><orcidid>https://orcid.org/0000-0002-3595-6614</orcidid><orcidid>https://orcid.org/0000-0002-1348-6682</orcidid><orcidid>https://orcid.org/0000-0002-8302-2250</orcidid><orcidid>https://orcid.org/0000-0002-3247-1363</orcidid><orcidid>https://orcid.org/0000-0001-6702-6211</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-02, Vol.12 (4), p.941 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2779528246 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Air quality management Alternative energy sources Analysis Automobile fleets Automobiles Carbon dioxide Case studies Climate change Diesel fuels Electric vehicles Electricity Emissions Energy consumption Environmental aspects Fuel consumption Gasoline Greenhouse gases Hybrid vehicles Hypotheses Infrastructure Performance evaluation Performance indices Pollutants Power trains Powertrain Sustainable development VOCs Volatile organic compounds |
title | Comparing the Sustainability of Different Powertrains for Urban Use |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A09%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20the%20Sustainability%20of%20Different%20Powertrains%20for%20Urban%20Use&rft.jtitle=Electronics%20(Basel)&rft.au=Cignini,%20Fabio&rft.date=2023-02-01&rft.volume=12&rft.issue=4&rft.spage=941&rft.pages=941-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12040941&rft_dat=%3Cgale_proqu%3EA743140206%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779528246&rft_id=info:pmid/&rft_galeid=A743140206&rfr_iscdi=true |