MalwD&C: A Quick and Accurate Machine Learning-Based Approach for Malware Detection and Categorization
Malware, short for malicious software, is any software program designed to cause harm to a computer or computer network. Malware can take many forms, such as viruses, worms, Trojan horses, and ransomware. Because malware can cause significant damage to a computer or network, it is important to avoid...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2023-02, Vol.13 (4), p.2508 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 2508 |
container_title | Applied sciences |
container_volume | 13 |
creator | Buriro, Attaullah Buriro, Abdul Baseer Ahmad, Tahir Buriro, Saifullah Ullah, Subhan |
description | Malware, short for malicious software, is any software program designed to cause harm to a computer or computer network. Malware can take many forms, such as viruses, worms, Trojan horses, and ransomware. Because malware can cause significant damage to a computer or network, it is important to avoid its installation to prevent any potential harm. This paper proposes a machine learning-based malware detection method called MalwD&C to allow the secure installation of Programmable Executable (PE) files. The proposed method uses machine learning classifiers to analyze the PE files and classify them as benign or malware. The proposed MalwD&C scheme was evaluated on a publicly available dataset by applying several machine learning classifiers in two settings: two-class classification (malware detection) and multi-class classification (malware categorization). The results showed that the Random Forest (RF) classifier outperformed all other chosen classifiers, achieving as high as 99.56% and 97.69% accuracies in the two-class and multi-class settings, respectively. We believe that MalwD&C will be widely accepted in academia and industry due to its speed in decision making and higher accuracy. |
doi_str_mv | 10.3390/app13042508 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2779525899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751988172</galeid><sourcerecordid>A751988172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-706763a21cf1b1f56cbb2363eea1078741f22a3cb99c9524d408f50e92c50fa93</originalsourceid><addsrcrecordid>eNpNUE1PwzAMjRBITGMn_kAkJC6oIx9t03ArG1_SJoQE58rNkpGxJSVtheDXkzIOsw-27PeerYfQOSVTziW5hqahnKQsI8URGjEi8oSnVBwf9Kdo0rYbEkNSXlAyQmYJ26_55ewGl_ilt-oDg1vhUqk-QKfxEtS7dRovNARn3Tq5hVbHfdMEH1fY-IAHBQgaz3WnVWe9-5OYRfraB_sDw-gMnRjYtnryX8fo7f7udfaYLJ4fnmblIlGciy4RJBc5B0aVoTU1Wa7qmvGcaw2UiEKk1DAGXNVSKpmxdJWSwmRES6YyYkDyMbrY68b_PnvddtXG98HFkxUTIlKyQg6o6R61hq2urDO-C6BirvTOKu-0sXFeiozKoqCCRcLVnqCCb9ugTdUEu4PwXVFSDeZXB-bzX6hkdRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779525899</pqid></control><display><type>article</type><title>MalwD&C: A Quick and Accurate Machine Learning-Based Approach for Malware Detection and Categorization</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Buriro, Attaullah ; Buriro, Abdul Baseer ; Ahmad, Tahir ; Buriro, Saifullah ; Ullah, Subhan</creator><creatorcontrib>Buriro, Attaullah ; Buriro, Abdul Baseer ; Ahmad, Tahir ; Buriro, Saifullah ; Ullah, Subhan</creatorcontrib><description>Malware, short for malicious software, is any software program designed to cause harm to a computer or computer network. Malware can take many forms, such as viruses, worms, Trojan horses, and ransomware. Because malware can cause significant damage to a computer or network, it is important to avoid its installation to prevent any potential harm. This paper proposes a machine learning-based malware detection method called MalwD&C to allow the secure installation of Programmable Executable (PE) files. The proposed method uses machine learning classifiers to analyze the PE files and classify them as benign or malware. The proposed MalwD&C scheme was evaluated on a publicly available dataset by applying several machine learning classifiers in two settings: two-class classification (malware detection) and multi-class classification (malware categorization). The results showed that the Random Forest (RF) classifier outperformed all other chosen classifiers, achieving as high as 99.56% and 97.69% accuracies in the two-class and multi-class settings, respectively. We believe that MalwD&C will be widely accepted in academia and industry due to its speed in decision making and higher accuracy.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13042508</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Classification ; Computer worms ; Computers ; Cybersecurity ; Datasets ; Decision making ; Learning algorithms ; Linux ; Machine learning ; Malware ; Social networks ; Software ; Support vector machines ; Viruses</subject><ispartof>Applied sciences, 2023-02, Vol.13 (4), p.2508</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-706763a21cf1b1f56cbb2363eea1078741f22a3cb99c9524d408f50e92c50fa93</citedby><cites>FETCH-LOGICAL-c337t-706763a21cf1b1f56cbb2363eea1078741f22a3cb99c9524d408f50e92c50fa93</cites><orcidid>0000-0002-7545-9153 ; 0000-0001-8105-6791 ; 0000-0003-2723-2410 ; 0000-0002-3925-621X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Buriro, Attaullah</creatorcontrib><creatorcontrib>Buriro, Abdul Baseer</creatorcontrib><creatorcontrib>Ahmad, Tahir</creatorcontrib><creatorcontrib>Buriro, Saifullah</creatorcontrib><creatorcontrib>Ullah, Subhan</creatorcontrib><title>MalwD&C: A Quick and Accurate Machine Learning-Based Approach for Malware Detection and Categorization</title><title>Applied sciences</title><description>Malware, short for malicious software, is any software program designed to cause harm to a computer or computer network. Malware can take many forms, such as viruses, worms, Trojan horses, and ransomware. Because malware can cause significant damage to a computer or network, it is important to avoid its installation to prevent any potential harm. This paper proposes a machine learning-based malware detection method called MalwD&C to allow the secure installation of Programmable Executable (PE) files. The proposed method uses machine learning classifiers to analyze the PE files and classify them as benign or malware. The proposed MalwD&C scheme was evaluated on a publicly available dataset by applying several machine learning classifiers in two settings: two-class classification (malware detection) and multi-class classification (malware categorization). The results showed that the Random Forest (RF) classifier outperformed all other chosen classifiers, achieving as high as 99.56% and 97.69% accuracies in the two-class and multi-class settings, respectively. We believe that MalwD&C will be widely accepted in academia and industry due to its speed in decision making and higher accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Classification</subject><subject>Computer worms</subject><subject>Computers</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Learning algorithms</subject><subject>Linux</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Social networks</subject><subject>Software</subject><subject>Support vector machines</subject><subject>Viruses</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUE1PwzAMjRBITGMn_kAkJC6oIx9t03ArG1_SJoQE58rNkpGxJSVtheDXkzIOsw-27PeerYfQOSVTziW5hqahnKQsI8URGjEi8oSnVBwf9Kdo0rYbEkNSXlAyQmYJ26_55ewGl_ilt-oDg1vhUqk-QKfxEtS7dRovNARn3Tq5hVbHfdMEH1fY-IAHBQgaz3WnVWe9-5OYRfraB_sDw-gMnRjYtnryX8fo7f7udfaYLJ4fnmblIlGciy4RJBc5B0aVoTU1Wa7qmvGcaw2UiEKk1DAGXNVSKpmxdJWSwmRES6YyYkDyMbrY68b_PnvddtXG98HFkxUTIlKyQg6o6R61hq2urDO-C6BirvTOKu-0sXFeiozKoqCCRcLVnqCCb9ugTdUEu4PwXVFSDeZXB-bzX6hkdRs</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Buriro, Attaullah</creator><creator>Buriro, Abdul Baseer</creator><creator>Ahmad, Tahir</creator><creator>Buriro, Saifullah</creator><creator>Ullah, Subhan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7545-9153</orcidid><orcidid>https://orcid.org/0000-0001-8105-6791</orcidid><orcidid>https://orcid.org/0000-0003-2723-2410</orcidid><orcidid>https://orcid.org/0000-0002-3925-621X</orcidid></search><sort><creationdate>20230201</creationdate><title>MalwD&C: A Quick and Accurate Machine Learning-Based Approach for Malware Detection and Categorization</title><author>Buriro, Attaullah ; Buriro, Abdul Baseer ; Ahmad, Tahir ; Buriro, Saifullah ; Ullah, Subhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-706763a21cf1b1f56cbb2363eea1078741f22a3cb99c9524d408f50e92c50fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Classification</topic><topic>Computer worms</topic><topic>Computers</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Learning algorithms</topic><topic>Linux</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Social networks</topic><topic>Software</topic><topic>Support vector machines</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buriro, Attaullah</creatorcontrib><creatorcontrib>Buriro, Abdul Baseer</creatorcontrib><creatorcontrib>Ahmad, Tahir</creatorcontrib><creatorcontrib>Buriro, Saifullah</creatorcontrib><creatorcontrib>Ullah, Subhan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buriro, Attaullah</au><au>Buriro, Abdul Baseer</au><au>Ahmad, Tahir</au><au>Buriro, Saifullah</au><au>Ullah, Subhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MalwD&C: A Quick and Accurate Machine Learning-Based Approach for Malware Detection and Categorization</atitle><jtitle>Applied sciences</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>13</volume><issue>4</issue><spage>2508</spage><pages>2508-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Malware, short for malicious software, is any software program designed to cause harm to a computer or computer network. Malware can take many forms, such as viruses, worms, Trojan horses, and ransomware. Because malware can cause significant damage to a computer or network, it is important to avoid its installation to prevent any potential harm. This paper proposes a machine learning-based malware detection method called MalwD&C to allow the secure installation of Programmable Executable (PE) files. The proposed method uses machine learning classifiers to analyze the PE files and classify them as benign or malware. The proposed MalwD&C scheme was evaluated on a publicly available dataset by applying several machine learning classifiers in two settings: two-class classification (malware detection) and multi-class classification (malware categorization). The results showed that the Random Forest (RF) classifier outperformed all other chosen classifiers, achieving as high as 99.56% and 97.69% accuracies in the two-class and multi-class settings, respectively. We believe that MalwD&C will be widely accepted in academia and industry due to its speed in decision making and higher accuracy.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13042508</doi><orcidid>https://orcid.org/0000-0002-7545-9153</orcidid><orcidid>https://orcid.org/0000-0001-8105-6791</orcidid><orcidid>https://orcid.org/0000-0003-2723-2410</orcidid><orcidid>https://orcid.org/0000-0002-3925-621X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2023-02, Vol.13 (4), p.2508 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_proquest_journals_2779525899 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Accuracy Algorithms Analysis Classification Computer worms Computers Cybersecurity Datasets Decision making Learning algorithms Linux Machine learning Malware Social networks Software Support vector machines Viruses |
title | MalwD&C: A Quick and Accurate Machine Learning-Based Approach for Malware Detection and Categorization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MalwD&C:%20A%20Quick%20and%20Accurate%20Machine%20Learning-Based%20Approach%20for%20Malware%20Detection%20and%20Categorization&rft.jtitle=Applied%20sciences&rft.au=Buriro,%20Attaullah&rft.date=2023-02-01&rft.volume=13&rft.issue=4&rft.spage=2508&rft.pages=2508-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13042508&rft_dat=%3Cgale_proqu%3EA751988172%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779525899&rft_id=info:pmid/&rft_galeid=A751988172&rfr_iscdi=true |