MalwD&C: A Quick and Accurate Machine Learning-Based Approach for Malware Detection and Categorization

Malware, short for malicious software, is any software program designed to cause harm to a computer or computer network. Malware can take many forms, such as viruses, worms, Trojan horses, and ransomware. Because malware can cause significant damage to a computer or network, it is important to avoid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-02, Vol.13 (4), p.2508
Hauptverfasser: Buriro, Attaullah, Buriro, Abdul Baseer, Ahmad, Tahir, Buriro, Saifullah, Ullah, Subhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 2508
container_title Applied sciences
container_volume 13
creator Buriro, Attaullah
Buriro, Abdul Baseer
Ahmad, Tahir
Buriro, Saifullah
Ullah, Subhan
description Malware, short for malicious software, is any software program designed to cause harm to a computer or computer network. Malware can take many forms, such as viruses, worms, Trojan horses, and ransomware. Because malware can cause significant damage to a computer or network, it is important to avoid its installation to prevent any potential harm. This paper proposes a machine learning-based malware detection method called MalwD&C to allow the secure installation of Programmable Executable (PE) files. The proposed method uses machine learning classifiers to analyze the PE files and classify them as benign or malware. The proposed MalwD&C scheme was evaluated on a publicly available dataset by applying several machine learning classifiers in two settings: two-class classification (malware detection) and multi-class classification (malware categorization). The results showed that the Random Forest (RF) classifier outperformed all other chosen classifiers, achieving as high as 99.56% and 97.69% accuracies in the two-class and multi-class settings, respectively. We believe that MalwD&C will be widely accepted in academia and industry due to its speed in decision making and higher accuracy.
doi_str_mv 10.3390/app13042508
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2779525899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751988172</galeid><sourcerecordid>A751988172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-706763a21cf1b1f56cbb2363eea1078741f22a3cb99c9524d408f50e92c50fa93</originalsourceid><addsrcrecordid>eNpNUE1PwzAMjRBITGMn_kAkJC6oIx9t03ArG1_SJoQE58rNkpGxJSVtheDXkzIOsw-27PeerYfQOSVTziW5hqahnKQsI8URGjEi8oSnVBwf9Kdo0rYbEkNSXlAyQmYJ26_55ewGl_ilt-oDg1vhUqk-QKfxEtS7dRovNARn3Tq5hVbHfdMEH1fY-IAHBQgaz3WnVWe9-5OYRfraB_sDw-gMnRjYtnryX8fo7f7udfaYLJ4fnmblIlGciy4RJBc5B0aVoTU1Wa7qmvGcaw2UiEKk1DAGXNVSKpmxdJWSwmRES6YyYkDyMbrY68b_PnvddtXG98HFkxUTIlKyQg6o6R61hq2urDO-C6BirvTOKu-0sXFeiozKoqCCRcLVnqCCb9ugTdUEu4PwXVFSDeZXB-bzX6hkdRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779525899</pqid></control><display><type>article</type><title>MalwD&amp;C: A Quick and Accurate Machine Learning-Based Approach for Malware Detection and Categorization</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Buriro, Attaullah ; Buriro, Abdul Baseer ; Ahmad, Tahir ; Buriro, Saifullah ; Ullah, Subhan</creator><creatorcontrib>Buriro, Attaullah ; Buriro, Abdul Baseer ; Ahmad, Tahir ; Buriro, Saifullah ; Ullah, Subhan</creatorcontrib><description>Malware, short for malicious software, is any software program designed to cause harm to a computer or computer network. Malware can take many forms, such as viruses, worms, Trojan horses, and ransomware. Because malware can cause significant damage to a computer or network, it is important to avoid its installation to prevent any potential harm. This paper proposes a machine learning-based malware detection method called MalwD&amp;C to allow the secure installation of Programmable Executable (PE) files. The proposed method uses machine learning classifiers to analyze the PE files and classify them as benign or malware. The proposed MalwD&amp;C scheme was evaluated on a publicly available dataset by applying several machine learning classifiers in two settings: two-class classification (malware detection) and multi-class classification (malware categorization). The results showed that the Random Forest (RF) classifier outperformed all other chosen classifiers, achieving as high as 99.56% and 97.69% accuracies in the two-class and multi-class settings, respectively. We believe that MalwD&amp;C will be widely accepted in academia and industry due to its speed in decision making and higher accuracy.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13042508</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Classification ; Computer worms ; Computers ; Cybersecurity ; Datasets ; Decision making ; Learning algorithms ; Linux ; Machine learning ; Malware ; Social networks ; Software ; Support vector machines ; Viruses</subject><ispartof>Applied sciences, 2023-02, Vol.13 (4), p.2508</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-706763a21cf1b1f56cbb2363eea1078741f22a3cb99c9524d408f50e92c50fa93</citedby><cites>FETCH-LOGICAL-c337t-706763a21cf1b1f56cbb2363eea1078741f22a3cb99c9524d408f50e92c50fa93</cites><orcidid>0000-0002-7545-9153 ; 0000-0001-8105-6791 ; 0000-0003-2723-2410 ; 0000-0002-3925-621X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Buriro, Attaullah</creatorcontrib><creatorcontrib>Buriro, Abdul Baseer</creatorcontrib><creatorcontrib>Ahmad, Tahir</creatorcontrib><creatorcontrib>Buriro, Saifullah</creatorcontrib><creatorcontrib>Ullah, Subhan</creatorcontrib><title>MalwD&amp;C: A Quick and Accurate Machine Learning-Based Approach for Malware Detection and Categorization</title><title>Applied sciences</title><description>Malware, short for malicious software, is any software program designed to cause harm to a computer or computer network. Malware can take many forms, such as viruses, worms, Trojan horses, and ransomware. Because malware can cause significant damage to a computer or network, it is important to avoid its installation to prevent any potential harm. This paper proposes a machine learning-based malware detection method called MalwD&amp;C to allow the secure installation of Programmable Executable (PE) files. The proposed method uses machine learning classifiers to analyze the PE files and classify them as benign or malware. The proposed MalwD&amp;C scheme was evaluated on a publicly available dataset by applying several machine learning classifiers in two settings: two-class classification (malware detection) and multi-class classification (malware categorization). The results showed that the Random Forest (RF) classifier outperformed all other chosen classifiers, achieving as high as 99.56% and 97.69% accuracies in the two-class and multi-class settings, respectively. We believe that MalwD&amp;C will be widely accepted in academia and industry due to its speed in decision making and higher accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Classification</subject><subject>Computer worms</subject><subject>Computers</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Learning algorithms</subject><subject>Linux</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Social networks</subject><subject>Software</subject><subject>Support vector machines</subject><subject>Viruses</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUE1PwzAMjRBITGMn_kAkJC6oIx9t03ArG1_SJoQE58rNkpGxJSVtheDXkzIOsw-27PeerYfQOSVTziW5hqahnKQsI8URGjEi8oSnVBwf9Kdo0rYbEkNSXlAyQmYJ26_55ewGl_ilt-oDg1vhUqk-QKfxEtS7dRovNARn3Tq5hVbHfdMEH1fY-IAHBQgaz3WnVWe9-5OYRfraB_sDw-gMnRjYtnryX8fo7f7udfaYLJ4fnmblIlGciy4RJBc5B0aVoTU1Wa7qmvGcaw2UiEKk1DAGXNVSKpmxdJWSwmRES6YyYkDyMbrY68b_PnvddtXG98HFkxUTIlKyQg6o6R61hq2urDO-C6BirvTOKu-0sXFeiozKoqCCRcLVnqCCb9ugTdUEu4PwXVFSDeZXB-bzX6hkdRs</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Buriro, Attaullah</creator><creator>Buriro, Abdul Baseer</creator><creator>Ahmad, Tahir</creator><creator>Buriro, Saifullah</creator><creator>Ullah, Subhan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7545-9153</orcidid><orcidid>https://orcid.org/0000-0001-8105-6791</orcidid><orcidid>https://orcid.org/0000-0003-2723-2410</orcidid><orcidid>https://orcid.org/0000-0002-3925-621X</orcidid></search><sort><creationdate>20230201</creationdate><title>MalwD&amp;C: A Quick and Accurate Machine Learning-Based Approach for Malware Detection and Categorization</title><author>Buriro, Attaullah ; Buriro, Abdul Baseer ; Ahmad, Tahir ; Buriro, Saifullah ; Ullah, Subhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-706763a21cf1b1f56cbb2363eea1078741f22a3cb99c9524d408f50e92c50fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Classification</topic><topic>Computer worms</topic><topic>Computers</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Learning algorithms</topic><topic>Linux</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Social networks</topic><topic>Software</topic><topic>Support vector machines</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buriro, Attaullah</creatorcontrib><creatorcontrib>Buriro, Abdul Baseer</creatorcontrib><creatorcontrib>Ahmad, Tahir</creatorcontrib><creatorcontrib>Buriro, Saifullah</creatorcontrib><creatorcontrib>Ullah, Subhan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buriro, Attaullah</au><au>Buriro, Abdul Baseer</au><au>Ahmad, Tahir</au><au>Buriro, Saifullah</au><au>Ullah, Subhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MalwD&amp;C: A Quick and Accurate Machine Learning-Based Approach for Malware Detection and Categorization</atitle><jtitle>Applied sciences</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>13</volume><issue>4</issue><spage>2508</spage><pages>2508-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Malware, short for malicious software, is any software program designed to cause harm to a computer or computer network. Malware can take many forms, such as viruses, worms, Trojan horses, and ransomware. Because malware can cause significant damage to a computer or network, it is important to avoid its installation to prevent any potential harm. This paper proposes a machine learning-based malware detection method called MalwD&amp;C to allow the secure installation of Programmable Executable (PE) files. The proposed method uses machine learning classifiers to analyze the PE files and classify them as benign or malware. The proposed MalwD&amp;C scheme was evaluated on a publicly available dataset by applying several machine learning classifiers in two settings: two-class classification (malware detection) and multi-class classification (malware categorization). The results showed that the Random Forest (RF) classifier outperformed all other chosen classifiers, achieving as high as 99.56% and 97.69% accuracies in the two-class and multi-class settings, respectively. We believe that MalwD&amp;C will be widely accepted in academia and industry due to its speed in decision making and higher accuracy.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13042508</doi><orcidid>https://orcid.org/0000-0002-7545-9153</orcidid><orcidid>https://orcid.org/0000-0001-8105-6791</orcidid><orcidid>https://orcid.org/0000-0003-2723-2410</orcidid><orcidid>https://orcid.org/0000-0002-3925-621X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2023-02, Vol.13 (4), p.2508
issn 2076-3417
2076-3417
language eng
recordid cdi_proquest_journals_2779525899
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Algorithms
Analysis
Classification
Computer worms
Computers
Cybersecurity
Datasets
Decision making
Learning algorithms
Linux
Machine learning
Malware
Social networks
Software
Support vector machines
Viruses
title MalwD&C: A Quick and Accurate Machine Learning-Based Approach for Malware Detection and Categorization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MalwD&C:%20A%20Quick%20and%20Accurate%20Machine%20Learning-Based%20Approach%20for%20Malware%20Detection%20and%20Categorization&rft.jtitle=Applied%20sciences&rft.au=Buriro,%20Attaullah&rft.date=2023-02-01&rft.volume=13&rft.issue=4&rft.spage=2508&rft.pages=2508-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13042508&rft_dat=%3Cgale_proqu%3EA751988172%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779525899&rft_id=info:pmid/&rft_galeid=A751988172&rfr_iscdi=true