Static and Dynamic Analysis of Linear Piezoelectric Structures Using Higher Order Shear Deformation Theories
This paper explores the effects of shear deformation on piezoelectric materials and structures that often serve as substrate layers of multilayer composite sensors and actuators. Based on higher-order shear elastic deformation and electric potential distribution theories, a general mathematical mode...
Gespeichert in:
Veröffentlicht in: | Journal of composites science 2023-02, Vol.7 (2), p.87 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 87 |
container_title | Journal of composites science |
container_volume | 7 |
creator | Ntaflos, Konstantinos I. Beltsios, Konstantinos G. Hadjigeorgiou, Evangelos P. |
description | This paper explores the effects of shear deformation on piezoelectric materials and structures that often serve as substrate layers of multilayer composite sensors and actuators. Based on higher-order shear elastic deformation and electric potential distribution theories, a general mathematical model is derived. Governing equations and the associated boundary conditions for a piezoelectric beam are developed using a generalized Hamilton’s principle. The static and dynamic behavior of the piezoelectric structure is investigated. A bending problem in static analysis and a free vibration problem in dynamic analysis are solved. The obtained results are in very good agreement with the results of the exact two dimensional solution available in the literature. |
doi_str_mv | 10.3390/jcs7020087 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2779506320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750288018</galeid><sourcerecordid>A750288018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-2db3e53ca1f48218eb4d5d3633364d2127f54639f1a131496d12ef54ef71a9d33</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBUnvxFwS8Cav52s3usbRqhUKFtuBtSZNJm7JNarJ7qL_elArKwMzj8d6Dmcmye4KfGKvx815FgSnGlbjKBrTAPOdCfF7_w7fZKMY9xpiKmuOaDbJ22cnOKiSdRtOTk4eEx062p2gj8gbNrQMZ0IeFbw8tqC4kwbILver6ABGto3VbNLPbHQS0CDr15e7smILx4ZCyvUOrHfhgId5lN0a2EUa_c5itX19Wk1k-X7y9T8bzXNGSdznVGwYFU5IYXlFSwYbrQrOSMVZyTQkVpuAlqw2RhBFel5pQSBQYQWStGRtmD5fcY_BfPcSu2fs-pK1iQ4WoC1wyipPq6aLayhYa64zvglSpNKQreAfGJn4sCkyrCpMqGR4vBhV8jAFMcwz2IMOpIbg5f6D5-wD7AXfyeIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779506320</pqid></control><display><type>article</type><title>Static and Dynamic Analysis of Linear Piezoelectric Structures Using Higher Order Shear Deformation Theories</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ntaflos, Konstantinos I. ; Beltsios, Konstantinos G. ; Hadjigeorgiou, Evangelos P.</creator><creatorcontrib>Ntaflos, Konstantinos I. ; Beltsios, Konstantinos G. ; Hadjigeorgiou, Evangelos P.</creatorcontrib><description>This paper explores the effects of shear deformation on piezoelectric materials and structures that often serve as substrate layers of multilayer composite sensors and actuators. Based on higher-order shear elastic deformation and electric potential distribution theories, a general mathematical model is derived. Governing equations and the associated boundary conditions for a piezoelectric beam are developed using a generalized Hamilton’s principle. The static and dynamic behavior of the piezoelectric structure is investigated. A bending problem in static analysis and a free vibration problem in dynamic analysis are solved. The obtained results are in very good agreement with the results of the exact two dimensional solution available in the literature.</description><identifier>ISSN: 2504-477X</identifier><identifier>EISSN: 2504-477X</identifier><identifier>DOI: 10.3390/jcs7020087</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Actuators ; Analysis ; Bending stresses ; Boundary conditions ; Cantilever beams ; Composite materials ; Deformation ; Deformation effects ; Elastic deformation ; Electric fields ; Free vibration ; Hamilton's principle ; Multilayers ; Piezoelectric materials ; Shear deformation ; Shear strain ; Shear stress ; Substrates ; Vibration ; Vibration analysis</subject><ispartof>Journal of composites science, 2023-02, Vol.7 (2), p.87</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-2db3e53ca1f48218eb4d5d3633364d2127f54639f1a131496d12ef54ef71a9d33</citedby><cites>FETCH-LOGICAL-c264t-2db3e53ca1f48218eb4d5d3633364d2127f54639f1a131496d12ef54ef71a9d33</cites><orcidid>0000-0002-5355-9663 ; 0000-0003-0889-1867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ntaflos, Konstantinos I.</creatorcontrib><creatorcontrib>Beltsios, Konstantinos G.</creatorcontrib><creatorcontrib>Hadjigeorgiou, Evangelos P.</creatorcontrib><title>Static and Dynamic Analysis of Linear Piezoelectric Structures Using Higher Order Shear Deformation Theories</title><title>Journal of composites science</title><description>This paper explores the effects of shear deformation on piezoelectric materials and structures that often serve as substrate layers of multilayer composite sensors and actuators. Based on higher-order shear elastic deformation and electric potential distribution theories, a general mathematical model is derived. Governing equations and the associated boundary conditions for a piezoelectric beam are developed using a generalized Hamilton’s principle. The static and dynamic behavior of the piezoelectric structure is investigated. A bending problem in static analysis and a free vibration problem in dynamic analysis are solved. The obtained results are in very good agreement with the results of the exact two dimensional solution available in the literature.</description><subject>Actuators</subject><subject>Analysis</subject><subject>Bending stresses</subject><subject>Boundary conditions</subject><subject>Cantilever beams</subject><subject>Composite materials</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Elastic deformation</subject><subject>Electric fields</subject><subject>Free vibration</subject><subject>Hamilton's principle</subject><subject>Multilayers</subject><subject>Piezoelectric materials</subject><subject>Shear deformation</subject><subject>Shear strain</subject><subject>Shear stress</subject><subject>Substrates</subject><subject>Vibration</subject><subject>Vibration analysis</subject><issn>2504-477X</issn><issn>2504-477X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUU1LAzEQXUTBUnvxFwS8Cav52s3usbRqhUKFtuBtSZNJm7JNarJ7qL_elArKwMzj8d6Dmcmye4KfGKvx815FgSnGlbjKBrTAPOdCfF7_w7fZKMY9xpiKmuOaDbJ22cnOKiSdRtOTk4eEx062p2gj8gbNrQMZ0IeFbw8tqC4kwbILver6ABGto3VbNLPbHQS0CDr15e7smILx4ZCyvUOrHfhgId5lN0a2EUa_c5itX19Wk1k-X7y9T8bzXNGSdznVGwYFU5IYXlFSwYbrQrOSMVZyTQkVpuAlqw2RhBFel5pQSBQYQWStGRtmD5fcY_BfPcSu2fs-pK1iQ4WoC1wyipPq6aLayhYa64zvglSpNKQreAfGJn4sCkyrCpMqGR4vBhV8jAFMcwz2IMOpIbg5f6D5-wD7AXfyeIk</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ntaflos, Konstantinos I.</creator><creator>Beltsios, Konstantinos G.</creator><creator>Hadjigeorgiou, Evangelos P.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5355-9663</orcidid><orcidid>https://orcid.org/0000-0003-0889-1867</orcidid></search><sort><creationdate>20230201</creationdate><title>Static and Dynamic Analysis of Linear Piezoelectric Structures Using Higher Order Shear Deformation Theories</title><author>Ntaflos, Konstantinos I. ; Beltsios, Konstantinos G. ; Hadjigeorgiou, Evangelos P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-2db3e53ca1f48218eb4d5d3633364d2127f54639f1a131496d12ef54ef71a9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Analysis</topic><topic>Bending stresses</topic><topic>Boundary conditions</topic><topic>Cantilever beams</topic><topic>Composite materials</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Elastic deformation</topic><topic>Electric fields</topic><topic>Free vibration</topic><topic>Hamilton's principle</topic><topic>Multilayers</topic><topic>Piezoelectric materials</topic><topic>Shear deformation</topic><topic>Shear strain</topic><topic>Shear stress</topic><topic>Substrates</topic><topic>Vibration</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ntaflos, Konstantinos I.</creatorcontrib><creatorcontrib>Beltsios, Konstantinos G.</creatorcontrib><creatorcontrib>Hadjigeorgiou, Evangelos P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of composites science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ntaflos, Konstantinos I.</au><au>Beltsios, Konstantinos G.</au><au>Hadjigeorgiou, Evangelos P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static and Dynamic Analysis of Linear Piezoelectric Structures Using Higher Order Shear Deformation Theories</atitle><jtitle>Journal of composites science</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>7</volume><issue>2</issue><spage>87</spage><pages>87-</pages><issn>2504-477X</issn><eissn>2504-477X</eissn><abstract>This paper explores the effects of shear deformation on piezoelectric materials and structures that often serve as substrate layers of multilayer composite sensors and actuators. Based on higher-order shear elastic deformation and electric potential distribution theories, a general mathematical model is derived. Governing equations and the associated boundary conditions for a piezoelectric beam are developed using a generalized Hamilton’s principle. The static and dynamic behavior of the piezoelectric structure is investigated. A bending problem in static analysis and a free vibration problem in dynamic analysis are solved. The obtained results are in very good agreement with the results of the exact two dimensional solution available in the literature.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jcs7020087</doi><orcidid>https://orcid.org/0000-0002-5355-9663</orcidid><orcidid>https://orcid.org/0000-0003-0889-1867</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-477X |
ispartof | Journal of composites science, 2023-02, Vol.7 (2), p.87 |
issn | 2504-477X 2504-477X |
language | eng |
recordid | cdi_proquest_journals_2779506320 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Actuators Analysis Bending stresses Boundary conditions Cantilever beams Composite materials Deformation Deformation effects Elastic deformation Electric fields Free vibration Hamilton's principle Multilayers Piezoelectric materials Shear deformation Shear strain Shear stress Substrates Vibration Vibration analysis |
title | Static and Dynamic Analysis of Linear Piezoelectric Structures Using Higher Order Shear Deformation Theories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20and%20Dynamic%20Analysis%20of%20Linear%20Piezoelectric%20Structures%20Using%20Higher%20Order%20Shear%20Deformation%20Theories&rft.jtitle=Journal%20of%20composites%20science&rft.au=Ntaflos,%20Konstantinos%20I.&rft.date=2023-02-01&rft.volume=7&rft.issue=2&rft.spage=87&rft.pages=87-&rft.issn=2504-477X&rft.eissn=2504-477X&rft_id=info:doi/10.3390/jcs7020087&rft_dat=%3Cgale_proqu%3EA750288018%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779506320&rft_id=info:pmid/&rft_galeid=A750288018&rfr_iscdi=true |