Preparation and properties of graphite/polypropylene composite material reinforced by chopped carbon fibers for proton‐exchange membrane fuel cell bipolar plates
In this work, chopped carbon fibers (CCFs) with different lengths were added to graphite/polypropylene (PP) composite materials to achieve high conductivity and flexural strength performances, which are required for use in proton exchange membrane fuel cells. The effects of CCF length (2–4 mm), CCF...
Gespeichert in:
Veröffentlicht in: | Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2023-02, Vol.23 (1), p.60-74 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 60 |
container_title | Fuel cells (Weinheim an der Bergstrasse, Germany) |
container_volume | 23 |
creator | Wei, Huili Chang, Guofeng Shi, Rongqun Xu, Sichuan Liu, Jinling |
description | In this work, chopped carbon fibers (CCFs) with different lengths were added to graphite/polypropylene (PP) composite materials to achieve high conductivity and flexural strength performances, which are required for use in proton exchange membrane fuel cells. The effects of CCF length (2–4 mm), CCF content (0–5 wt.%), graphite type‐natural flake graphite (NFG) and synthetic graphite (SG), and graphite particle size (18–106 µm) on the graphite/PP/CCFs composites are examined. The conductivities of the composites decrease significantly with increasing CCF length above 3 wt.%. CCFs improve the composite's strength, with a maximum strength of 45.8 MPa being achieved with 5 wt.% of 4 mm long CCFs. Composite with NFG exhibits superior conductivity to the one with SG but lacks flexural strength. The NFG particle size significantly affects the conductivity of the composite at high graphite contents, with a particle diameter of 75 µm resulting in maximum conductivity. An optimal composition with 38 µm/82 wt.% NFG and 2 mm/3 wt.% CCF, electrical conductivity, and flexural strength of 189.4 S/cm and 30.2 MPa, respectively, were achieved. Also, this composite exhibited interfacial contact resistance 2.52mΩ·cm2$2.52\;{\rm{m}}\Omega \cdot {\rm{c}}{{\rm{m}}^{\rm{2}}}$ and contact angles of 111°, which showed favorable interfacial conductivity and hydrophobicity performances. |
doi_str_mv | 10.1002/fuce.202200098 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779393363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779393363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-7a225125628f9ab35c078a093c4d49f92aebafe2b08e0202d8b1d557d518a41d3</originalsourceid><addsrcrecordid>eNqFkbtOAzEQRVcIJJ4ttSXqBNv78pYo4iVFgoLUq7F3nBg5a2NvBNvxCfwDf8aX4CgISiqPPPeeGftm2TmjU0Ypv9QbhVNOOaeUNmIvO2IVKyeVKIv937qoDrPjGJ8pZbUQxVH2-RjQQ4DBuJ5A3xEfnMcwGIzEabIM4FdmwEvv7LhtjRZ7JMqtvYvpnqxhwGDAkoCm1y4o7IgciVo571OpIMgE1kZiiCT1t_zB9V_vH_imVtAvEwLXMkCi6g1aotBaIk2aB0lsEz6eZgcabMSzn_MkW9xcP83uJvOH2_vZ1Xyi8vSaSQ2cl4yXFRe6AZmXitYCaJOroisa3XBACRq5pAJp-qdOSNaVZd2VTEDBuvwku9hx044vG4xD--w2oU8jW17XTd7keZUn1XSnUsHFGFC3Ppg1hLFltN0G0W6DaH-DSIZmZ3g1Fsd_1O3NYnb95_0GFAGSag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779393363</pqid></control><display><type>article</type><title>Preparation and properties of graphite/polypropylene composite material reinforced by chopped carbon fibers for proton‐exchange membrane fuel cell bipolar plates</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Huili ; Chang, Guofeng ; Shi, Rongqun ; Xu, Sichuan ; Liu, Jinling</creator><creatorcontrib>Wei, Huili ; Chang, Guofeng ; Shi, Rongqun ; Xu, Sichuan ; Liu, Jinling</creatorcontrib><description>In this work, chopped carbon fibers (CCFs) with different lengths were added to graphite/polypropylene (PP) composite materials to achieve high conductivity and flexural strength performances, which are required for use in proton exchange membrane fuel cells. The effects of CCF length (2–4 mm), CCF content (0–5 wt.%), graphite type‐natural flake graphite (NFG) and synthetic graphite (SG), and graphite particle size (18–106 µm) on the graphite/PP/CCFs composites are examined. The conductivities of the composites decrease significantly with increasing CCF length above 3 wt.%. CCFs improve the composite's strength, with a maximum strength of 45.8 MPa being achieved with 5 wt.% of 4 mm long CCFs. Composite with NFG exhibits superior conductivity to the one with SG but lacks flexural strength. The NFG particle size significantly affects the conductivity of the composite at high graphite contents, with a particle diameter of 75 µm resulting in maximum conductivity. An optimal composition with 38 µm/82 wt.% NFG and 2 mm/3 wt.% CCF, electrical conductivity, and flexural strength of 189.4 S/cm and 30.2 MPa, respectively, were achieved. Also, this composite exhibited interfacial contact resistance 2.52mΩ·cm2$2.52\;{\rm{m}}\Omega \cdot {\rm{c}}{{\rm{m}}^{\rm{2}}}$ and contact angles of 111°, which showed favorable interfacial conductivity and hydrophobicity performances.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.202200098</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon fiber reinforced plastics ; Carbon fibers ; chopped carbon fiber ; composite bipolar plate ; Composite materials ; Conductivity ; Contact angle ; Contact resistance ; Electric contacts ; electrical conductivity ; Electrical resistivity ; fiber length ; Flexural strength ; Graphite ; Hydrophobicity ; Particle size ; PEMFC ; Polymer matrix composites ; Polypropylene ; Proton exchange membrane fuel cells ; Protons</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2023-02, Vol.23 (1), p.60-74</ispartof><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-7a225125628f9ab35c078a093c4d49f92aebafe2b08e0202d8b1d557d518a41d3</citedby><cites>FETCH-LOGICAL-c3178-7a225125628f9ab35c078a093c4d49f92aebafe2b08e0202d8b1d557d518a41d3</cites><orcidid>0000-0001-7217-9992 ; 0000-0002-6108-3036 ; 0000-0001-5210-8660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffuce.202200098$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffuce.202200098$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wei, Huili</creatorcontrib><creatorcontrib>Chang, Guofeng</creatorcontrib><creatorcontrib>Shi, Rongqun</creatorcontrib><creatorcontrib>Xu, Sichuan</creatorcontrib><creatorcontrib>Liu, Jinling</creatorcontrib><title>Preparation and properties of graphite/polypropylene composite material reinforced by chopped carbon fibers for proton‐exchange membrane fuel cell bipolar plates</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><description>In this work, chopped carbon fibers (CCFs) with different lengths were added to graphite/polypropylene (PP) composite materials to achieve high conductivity and flexural strength performances, which are required for use in proton exchange membrane fuel cells. The effects of CCF length (2–4 mm), CCF content (0–5 wt.%), graphite type‐natural flake graphite (NFG) and synthetic graphite (SG), and graphite particle size (18–106 µm) on the graphite/PP/CCFs composites are examined. The conductivities of the composites decrease significantly with increasing CCF length above 3 wt.%. CCFs improve the composite's strength, with a maximum strength of 45.8 MPa being achieved with 5 wt.% of 4 mm long CCFs. Composite with NFG exhibits superior conductivity to the one with SG but lacks flexural strength. The NFG particle size significantly affects the conductivity of the composite at high graphite contents, with a particle diameter of 75 µm resulting in maximum conductivity. An optimal composition with 38 µm/82 wt.% NFG and 2 mm/3 wt.% CCF, electrical conductivity, and flexural strength of 189.4 S/cm and 30.2 MPa, respectively, were achieved. Also, this composite exhibited interfacial contact resistance 2.52mΩ·cm2$2.52\;{\rm{m}}\Omega \cdot {\rm{c}}{{\rm{m}}^{\rm{2}}}$ and contact angles of 111°, which showed favorable interfacial conductivity and hydrophobicity performances.</description><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>chopped carbon fiber</subject><subject>composite bipolar plate</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Contact angle</subject><subject>Contact resistance</subject><subject>Electric contacts</subject><subject>electrical conductivity</subject><subject>Electrical resistivity</subject><subject>fiber length</subject><subject>Flexural strength</subject><subject>Graphite</subject><subject>Hydrophobicity</subject><subject>Particle size</subject><subject>PEMFC</subject><subject>Polymer matrix composites</subject><subject>Polypropylene</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOAzEQRVcIJJ4ttSXqBNv78pYo4iVFgoLUq7F3nBg5a2NvBNvxCfwDf8aX4CgISiqPPPeeGftm2TmjU0Ypv9QbhVNOOaeUNmIvO2IVKyeVKIv937qoDrPjGJ8pZbUQxVH2-RjQQ4DBuJ5A3xEfnMcwGIzEabIM4FdmwEvv7LhtjRZ7JMqtvYvpnqxhwGDAkoCm1y4o7IgciVo571OpIMgE1kZiiCT1t_zB9V_vH_imVtAvEwLXMkCi6g1aotBaIk2aB0lsEz6eZgcabMSzn_MkW9xcP83uJvOH2_vZ1Xyi8vSaSQ2cl4yXFRe6AZmXitYCaJOroisa3XBACRq5pAJp-qdOSNaVZd2VTEDBuvwku9hx044vG4xD--w2oU8jW17XTd7keZUn1XSnUsHFGFC3Ppg1hLFltN0G0W6DaH-DSIZmZ3g1Fsd_1O3NYnb95_0GFAGSag</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Wei, Huili</creator><creator>Chang, Guofeng</creator><creator>Shi, Rongqun</creator><creator>Xu, Sichuan</creator><creator>Liu, Jinling</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7217-9992</orcidid><orcidid>https://orcid.org/0000-0002-6108-3036</orcidid><orcidid>https://orcid.org/0000-0001-5210-8660</orcidid></search><sort><creationdate>202302</creationdate><title>Preparation and properties of graphite/polypropylene composite material reinforced by chopped carbon fibers for proton‐exchange membrane fuel cell bipolar plates</title><author>Wei, Huili ; Chang, Guofeng ; Shi, Rongqun ; Xu, Sichuan ; Liu, Jinling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-7a225125628f9ab35c078a093c4d49f92aebafe2b08e0202d8b1d557d518a41d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>chopped carbon fiber</topic><topic>composite bipolar plate</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Contact angle</topic><topic>Contact resistance</topic><topic>Electric contacts</topic><topic>electrical conductivity</topic><topic>Electrical resistivity</topic><topic>fiber length</topic><topic>Flexural strength</topic><topic>Graphite</topic><topic>Hydrophobicity</topic><topic>Particle size</topic><topic>PEMFC</topic><topic>Polymer matrix composites</topic><topic>Polypropylene</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Huili</creatorcontrib><creatorcontrib>Chang, Guofeng</creatorcontrib><creatorcontrib>Shi, Rongqun</creatorcontrib><creatorcontrib>Xu, Sichuan</creatorcontrib><creatorcontrib>Liu, Jinling</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Huili</au><au>Chang, Guofeng</au><au>Shi, Rongqun</au><au>Xu, Sichuan</au><au>Liu, Jinling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and properties of graphite/polypropylene composite material reinforced by chopped carbon fibers for proton‐exchange membrane fuel cell bipolar plates</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><date>2023-02</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>60</spage><epage>74</epage><pages>60-74</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>In this work, chopped carbon fibers (CCFs) with different lengths were added to graphite/polypropylene (PP) composite materials to achieve high conductivity and flexural strength performances, which are required for use in proton exchange membrane fuel cells. The effects of CCF length (2–4 mm), CCF content (0–5 wt.%), graphite type‐natural flake graphite (NFG) and synthetic graphite (SG), and graphite particle size (18–106 µm) on the graphite/PP/CCFs composites are examined. The conductivities of the composites decrease significantly with increasing CCF length above 3 wt.%. CCFs improve the composite's strength, with a maximum strength of 45.8 MPa being achieved with 5 wt.% of 4 mm long CCFs. Composite with NFG exhibits superior conductivity to the one with SG but lacks flexural strength. The NFG particle size significantly affects the conductivity of the composite at high graphite contents, with a particle diameter of 75 µm resulting in maximum conductivity. An optimal composition with 38 µm/82 wt.% NFG and 2 mm/3 wt.% CCF, electrical conductivity, and flexural strength of 189.4 S/cm and 30.2 MPa, respectively, were achieved. Also, this composite exhibited interfacial contact resistance 2.52mΩ·cm2$2.52\;{\rm{m}}\Omega \cdot {\rm{c}}{{\rm{m}}^{\rm{2}}}$ and contact angles of 111°, which showed favorable interfacial conductivity and hydrophobicity performances.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fuce.202200098</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7217-9992</orcidid><orcidid>https://orcid.org/0000-0002-6108-3036</orcidid><orcidid>https://orcid.org/0000-0001-5210-8660</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-6846 |
ispartof | Fuel cells (Weinheim an der Bergstrasse, Germany), 2023-02, Vol.23 (1), p.60-74 |
issn | 1615-6846 1615-6854 |
language | eng |
recordid | cdi_proquest_journals_2779393363 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon fiber reinforced plastics Carbon fibers chopped carbon fiber composite bipolar plate Composite materials Conductivity Contact angle Contact resistance Electric contacts electrical conductivity Electrical resistivity fiber length Flexural strength Graphite Hydrophobicity Particle size PEMFC Polymer matrix composites Polypropylene Proton exchange membrane fuel cells Protons |
title | Preparation and properties of graphite/polypropylene composite material reinforced by chopped carbon fibers for proton‐exchange membrane fuel cell bipolar plates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20properties%20of%20graphite/polypropylene%20composite%20material%20reinforced%20by%20chopped%20carbon%20fibers%20for%20proton%E2%80%90exchange%20membrane%20fuel%20cell%20bipolar%20plates&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wei,%20Huili&rft.date=2023-02&rft.volume=23&rft.issue=1&rft.spage=60&rft.epage=74&rft.pages=60-74&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.202200098&rft_dat=%3Cproquest_cross%3E2779393363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779393363&rft_id=info:pmid/&rfr_iscdi=true |