Constraining Supernova Physics through Gravitational-Wave Observations

We examine the potential for using the LIGO-Virgo-KAGRA network of gravitational-wave detectors to provide constraints on the physical properties of core-collapse supernovae through the observation of their gravitational radiation. We use waveforms generated by 14 of the latest 3D hydrodynamic core-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Dálya, Gergely, Bleuzé, Sibe, Bécsy, Bence, de Souza, Rafael S, Szalai, Tamás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dálya, Gergely
Bleuzé, Sibe
Bécsy, Bence
de Souza, Rafael S
Szalai, Tamás
description We examine the potential for using the LIGO-Virgo-KAGRA network of gravitational-wave detectors to provide constraints on the physical properties of core-collapse supernovae through the observation of their gravitational radiation. We use waveforms generated by 14 of the latest 3D hydrodynamic core-collapse supernova simulations, which are added to noise samples based on the predicted sensitivities of the GW detectors during the O5 observing run. Then we use the BayesWave algorithm to model-independently reconstruct the gravitational-wave waveforms, which are used as input for various machine learning algorithms. Our results demonstrate how these algorithms perform in terms of i) indicating the presence of specific features of the progenitor or the explosion, ii) predicting the explosion mechanism, and iii) estimating the mass and angular velocity of the progenitor, as a function of the signal-to-noise ratio of the observed supernova signal. The conclusions of our study highlight the potential for GW observations to complement electromagnetic detections of supernovae by providing unique information about the exact explosion mechanism and the dynamics of the collapse.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2779265275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779265275</sourcerecordid><originalsourceid>FETCH-proquest_journals_27792652753</originalsourceid><addsrcrecordid>eNqNi9EKwiAUQCUIGrV_EHoerGvOeh6t3goKehwWNh1Dl1eF_r6IPqCnA4dzJiQDxlbFZg0wIzliX5YlVAI4ZxlpamcxeGmssR09x1F565KkJ_1Cc0catHex03TvZTJBBuOsHIqrTIoeb6h8-ipckOlDDqjyH-dk2ewu9aEYvXtGhaHtXfSfFVsQYgsVB8HZf9UbUNc8fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779265275</pqid></control><display><type>article</type><title>Constraining Supernova Physics through Gravitational-Wave Observations</title><source>Open Access Journals</source><creator>Dálya, Gergely ; Bleuzé, Sibe ; Bécsy, Bence ; de Souza, Rafael S ; Szalai, Tamás</creator><creatorcontrib>Dálya, Gergely ; Bleuzé, Sibe ; Bécsy, Bence ; de Souza, Rafael S ; Szalai, Tamás</creatorcontrib><description>We examine the potential for using the LIGO-Virgo-KAGRA network of gravitational-wave detectors to provide constraints on the physical properties of core-collapse supernovae through the observation of their gravitational radiation. We use waveforms generated by 14 of the latest 3D hydrodynamic core-collapse supernova simulations, which are added to noise samples based on the predicted sensitivities of the GW detectors during the O5 observing run. Then we use the BayesWave algorithm to model-independently reconstruct the gravitational-wave waveforms, which are used as input for various machine learning algorithms. Our results demonstrate how these algorithms perform in terms of i) indicating the presence of specific features of the progenitor or the explosion, ii) predicting the explosion mechanism, and iii) estimating the mass and angular velocity of the progenitor, as a function of the signal-to-noise ratio of the observed supernova signal. The conclusions of our study highlight the potential for GW observations to complement electromagnetic detections of supernovae by providing unique information about the exact explosion mechanism and the dynamics of the collapse.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Angular velocity ; Detectors ; Explosions ; Gravitational waves ; Machine learning ; Noise prediction ; Physical properties ; Signal to noise ratio ; Supernovae ; Waveforms</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Dálya, Gergely</creatorcontrib><creatorcontrib>Bleuzé, Sibe</creatorcontrib><creatorcontrib>Bécsy, Bence</creatorcontrib><creatorcontrib>de Souza, Rafael S</creatorcontrib><creatorcontrib>Szalai, Tamás</creatorcontrib><title>Constraining Supernova Physics through Gravitational-Wave Observations</title><title>arXiv.org</title><description>We examine the potential for using the LIGO-Virgo-KAGRA network of gravitational-wave detectors to provide constraints on the physical properties of core-collapse supernovae through the observation of their gravitational radiation. We use waveforms generated by 14 of the latest 3D hydrodynamic core-collapse supernova simulations, which are added to noise samples based on the predicted sensitivities of the GW detectors during the O5 observing run. Then we use the BayesWave algorithm to model-independently reconstruct the gravitational-wave waveforms, which are used as input for various machine learning algorithms. Our results demonstrate how these algorithms perform in terms of i) indicating the presence of specific features of the progenitor or the explosion, ii) predicting the explosion mechanism, and iii) estimating the mass and angular velocity of the progenitor, as a function of the signal-to-noise ratio of the observed supernova signal. The conclusions of our study highlight the potential for GW observations to complement electromagnetic detections of supernovae by providing unique information about the exact explosion mechanism and the dynamics of the collapse.</description><subject>Algorithms</subject><subject>Angular velocity</subject><subject>Detectors</subject><subject>Explosions</subject><subject>Gravitational waves</subject><subject>Machine learning</subject><subject>Noise prediction</subject><subject>Physical properties</subject><subject>Signal to noise ratio</subject><subject>Supernovae</subject><subject>Waveforms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi9EKwiAUQCUIGrV_EHoerGvOeh6t3goKehwWNh1Dl1eF_r6IPqCnA4dzJiQDxlbFZg0wIzliX5YlVAI4ZxlpamcxeGmssR09x1F565KkJ_1Cc0catHex03TvZTJBBuOsHIqrTIoeb6h8-ipckOlDDqjyH-dk2ewu9aEYvXtGhaHtXfSfFVsQYgsVB8HZf9UbUNc8fQ</recordid><startdate>20230222</startdate><enddate>20230222</enddate><creator>Dálya, Gergely</creator><creator>Bleuzé, Sibe</creator><creator>Bécsy, Bence</creator><creator>de Souza, Rafael S</creator><creator>Szalai, Tamás</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230222</creationdate><title>Constraining Supernova Physics through Gravitational-Wave Observations</title><author>Dálya, Gergely ; Bleuzé, Sibe ; Bécsy, Bence ; de Souza, Rafael S ; Szalai, Tamás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27792652753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Angular velocity</topic><topic>Detectors</topic><topic>Explosions</topic><topic>Gravitational waves</topic><topic>Machine learning</topic><topic>Noise prediction</topic><topic>Physical properties</topic><topic>Signal to noise ratio</topic><topic>Supernovae</topic><topic>Waveforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Dálya, Gergely</creatorcontrib><creatorcontrib>Bleuzé, Sibe</creatorcontrib><creatorcontrib>Bécsy, Bence</creatorcontrib><creatorcontrib>de Souza, Rafael S</creatorcontrib><creatorcontrib>Szalai, Tamás</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dálya, Gergely</au><au>Bleuzé, Sibe</au><au>Bécsy, Bence</au><au>de Souza, Rafael S</au><au>Szalai, Tamás</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Constraining Supernova Physics through Gravitational-Wave Observations</atitle><jtitle>arXiv.org</jtitle><date>2023-02-22</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We examine the potential for using the LIGO-Virgo-KAGRA network of gravitational-wave detectors to provide constraints on the physical properties of core-collapse supernovae through the observation of their gravitational radiation. We use waveforms generated by 14 of the latest 3D hydrodynamic core-collapse supernova simulations, which are added to noise samples based on the predicted sensitivities of the GW detectors during the O5 observing run. Then we use the BayesWave algorithm to model-independently reconstruct the gravitational-wave waveforms, which are used as input for various machine learning algorithms. Our results demonstrate how these algorithms perform in terms of i) indicating the presence of specific features of the progenitor or the explosion, ii) predicting the explosion mechanism, and iii) estimating the mass and angular velocity of the progenitor, as a function of the signal-to-noise ratio of the observed supernova signal. The conclusions of our study highlight the potential for GW observations to complement electromagnetic detections of supernovae by providing unique information about the exact explosion mechanism and the dynamics of the collapse.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2779265275
source Open Access Journals
subjects Algorithms
Angular velocity
Detectors
Explosions
Gravitational waves
Machine learning
Noise prediction
Physical properties
Signal to noise ratio
Supernovae
Waveforms
title Constraining Supernova Physics through Gravitational-Wave Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Constraining%20Supernova%20Physics%20through%20Gravitational-Wave%20Observations&rft.jtitle=arXiv.org&rft.au=D%C3%A1lya,%20Gergely&rft.date=2023-02-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2779265275%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779265275&rft_id=info:pmid/&rfr_iscdi=true