Constraining Supernova Physics through Gravitational-Wave Observations
We examine the potential for using the LIGO-Virgo-KAGRA network of gravitational-wave detectors to provide constraints on the physical properties of core-collapse supernovae through the observation of their gravitational radiation. We use waveforms generated by 14 of the latest 3D hydrodynamic core-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dálya, Gergely Bleuzé, Sibe Bécsy, Bence de Souza, Rafael S Szalai, Tamás |
description | We examine the potential for using the LIGO-Virgo-KAGRA network of gravitational-wave detectors to provide constraints on the physical properties of core-collapse supernovae through the observation of their gravitational radiation. We use waveforms generated by 14 of the latest 3D hydrodynamic core-collapse supernova simulations, which are added to noise samples based on the predicted sensitivities of the GW detectors during the O5 observing run. Then we use the BayesWave algorithm to model-independently reconstruct the gravitational-wave waveforms, which are used as input for various machine learning algorithms. Our results demonstrate how these algorithms perform in terms of i) indicating the presence of specific features of the progenitor or the explosion, ii) predicting the explosion mechanism, and iii) estimating the mass and angular velocity of the progenitor, as a function of the signal-to-noise ratio of the observed supernova signal. The conclusions of our study highlight the potential for GW observations to complement electromagnetic detections of supernovae by providing unique information about the exact explosion mechanism and the dynamics of the collapse. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2779265275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779265275</sourcerecordid><originalsourceid>FETCH-proquest_journals_27792652753</originalsourceid><addsrcrecordid>eNqNi9EKwiAUQCUIGrV_EHoerGvOeh6t3goKehwWNh1Dl1eF_r6IPqCnA4dzJiQDxlbFZg0wIzliX5YlVAI4ZxlpamcxeGmssR09x1F565KkJ_1Cc0catHex03TvZTJBBuOsHIqrTIoeb6h8-ipckOlDDqjyH-dk2ewu9aEYvXtGhaHtXfSfFVsQYgsVB8HZf9UbUNc8fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779265275</pqid></control><display><type>article</type><title>Constraining Supernova Physics through Gravitational-Wave Observations</title><source>Open Access Journals</source><creator>Dálya, Gergely ; Bleuzé, Sibe ; Bécsy, Bence ; de Souza, Rafael S ; Szalai, Tamás</creator><creatorcontrib>Dálya, Gergely ; Bleuzé, Sibe ; Bécsy, Bence ; de Souza, Rafael S ; Szalai, Tamás</creatorcontrib><description>We examine the potential for using the LIGO-Virgo-KAGRA network of gravitational-wave detectors to provide constraints on the physical properties of core-collapse supernovae through the observation of their gravitational radiation. We use waveforms generated by 14 of the latest 3D hydrodynamic core-collapse supernova simulations, which are added to noise samples based on the predicted sensitivities of the GW detectors during the O5 observing run. Then we use the BayesWave algorithm to model-independently reconstruct the gravitational-wave waveforms, which are used as input for various machine learning algorithms. Our results demonstrate how these algorithms perform in terms of i) indicating the presence of specific features of the progenitor or the explosion, ii) predicting the explosion mechanism, and iii) estimating the mass and angular velocity of the progenitor, as a function of the signal-to-noise ratio of the observed supernova signal. The conclusions of our study highlight the potential for GW observations to complement electromagnetic detections of supernovae by providing unique information about the exact explosion mechanism and the dynamics of the collapse.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Angular velocity ; Detectors ; Explosions ; Gravitational waves ; Machine learning ; Noise prediction ; Physical properties ; Signal to noise ratio ; Supernovae ; Waveforms</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Dálya, Gergely</creatorcontrib><creatorcontrib>Bleuzé, Sibe</creatorcontrib><creatorcontrib>Bécsy, Bence</creatorcontrib><creatorcontrib>de Souza, Rafael S</creatorcontrib><creatorcontrib>Szalai, Tamás</creatorcontrib><title>Constraining Supernova Physics through Gravitational-Wave Observations</title><title>arXiv.org</title><description>We examine the potential for using the LIGO-Virgo-KAGRA network of gravitational-wave detectors to provide constraints on the physical properties of core-collapse supernovae through the observation of their gravitational radiation. We use waveforms generated by 14 of the latest 3D hydrodynamic core-collapse supernova simulations, which are added to noise samples based on the predicted sensitivities of the GW detectors during the O5 observing run. Then we use the BayesWave algorithm to model-independently reconstruct the gravitational-wave waveforms, which are used as input for various machine learning algorithms. Our results demonstrate how these algorithms perform in terms of i) indicating the presence of specific features of the progenitor or the explosion, ii) predicting the explosion mechanism, and iii) estimating the mass and angular velocity of the progenitor, as a function of the signal-to-noise ratio of the observed supernova signal. The conclusions of our study highlight the potential for GW observations to complement electromagnetic detections of supernovae by providing unique information about the exact explosion mechanism and the dynamics of the collapse.</description><subject>Algorithms</subject><subject>Angular velocity</subject><subject>Detectors</subject><subject>Explosions</subject><subject>Gravitational waves</subject><subject>Machine learning</subject><subject>Noise prediction</subject><subject>Physical properties</subject><subject>Signal to noise ratio</subject><subject>Supernovae</subject><subject>Waveforms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi9EKwiAUQCUIGrV_EHoerGvOeh6t3goKehwWNh1Dl1eF_r6IPqCnA4dzJiQDxlbFZg0wIzliX5YlVAI4ZxlpamcxeGmssR09x1F565KkJ_1Cc0catHex03TvZTJBBuOsHIqrTIoeb6h8-ipckOlDDqjyH-dk2ewu9aEYvXtGhaHtXfSfFVsQYgsVB8HZf9UbUNc8fQ</recordid><startdate>20230222</startdate><enddate>20230222</enddate><creator>Dálya, Gergely</creator><creator>Bleuzé, Sibe</creator><creator>Bécsy, Bence</creator><creator>de Souza, Rafael S</creator><creator>Szalai, Tamás</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230222</creationdate><title>Constraining Supernova Physics through Gravitational-Wave Observations</title><author>Dálya, Gergely ; Bleuzé, Sibe ; Bécsy, Bence ; de Souza, Rafael S ; Szalai, Tamás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27792652753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Angular velocity</topic><topic>Detectors</topic><topic>Explosions</topic><topic>Gravitational waves</topic><topic>Machine learning</topic><topic>Noise prediction</topic><topic>Physical properties</topic><topic>Signal to noise ratio</topic><topic>Supernovae</topic><topic>Waveforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Dálya, Gergely</creatorcontrib><creatorcontrib>Bleuzé, Sibe</creatorcontrib><creatorcontrib>Bécsy, Bence</creatorcontrib><creatorcontrib>de Souza, Rafael S</creatorcontrib><creatorcontrib>Szalai, Tamás</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dálya, Gergely</au><au>Bleuzé, Sibe</au><au>Bécsy, Bence</au><au>de Souza, Rafael S</au><au>Szalai, Tamás</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Constraining Supernova Physics through Gravitational-Wave Observations</atitle><jtitle>arXiv.org</jtitle><date>2023-02-22</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We examine the potential for using the LIGO-Virgo-KAGRA network of gravitational-wave detectors to provide constraints on the physical properties of core-collapse supernovae through the observation of their gravitational radiation. We use waveforms generated by 14 of the latest 3D hydrodynamic core-collapse supernova simulations, which are added to noise samples based on the predicted sensitivities of the GW detectors during the O5 observing run. Then we use the BayesWave algorithm to model-independently reconstruct the gravitational-wave waveforms, which are used as input for various machine learning algorithms. Our results demonstrate how these algorithms perform in terms of i) indicating the presence of specific features of the progenitor or the explosion, ii) predicting the explosion mechanism, and iii) estimating the mass and angular velocity of the progenitor, as a function of the signal-to-noise ratio of the observed supernova signal. The conclusions of our study highlight the potential for GW observations to complement electromagnetic detections of supernovae by providing unique information about the exact explosion mechanism and the dynamics of the collapse.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2779265275 |
source | Open Access Journals |
subjects | Algorithms Angular velocity Detectors Explosions Gravitational waves Machine learning Noise prediction Physical properties Signal to noise ratio Supernovae Waveforms |
title | Constraining Supernova Physics through Gravitational-Wave Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Constraining%20Supernova%20Physics%20through%20Gravitational-Wave%20Observations&rft.jtitle=arXiv.org&rft.au=D%C3%A1lya,%20Gergely&rft.date=2023-02-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2779265275%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779265275&rft_id=info:pmid/&rfr_iscdi=true |