Korovkin-Type Theorems for Statistically Convergent Sequences of Monotone and Sublinear Operators

In this paper, we study the statistical convergence almost everywhere, in measure and in L p in Korovkin-type theorem for monotone and sublinear operators. Our results are illustrated by a series of concrete examples.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2023-03, Vol.46 (2), Article 79
Hauptverfasser: Gal, Sorin G., Iancu, Ionut T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Bulletin of the Malaysian Mathematical Sciences Society
container_volume 46
creator Gal, Sorin G.
Iancu, Ionut T.
description In this paper, we study the statistical convergence almost everywhere, in measure and in L p in Korovkin-type theorem for monotone and sublinear operators. Our results are illustrated by a series of concrete examples.
doi_str_mv 10.1007/s40840-023-01471-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779140757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779140757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-24b1f8ad48fe2a32bbdb21f34d16d372d402cfbf65bd67aeabc18559d06106a13</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEhX0DzBZYjacHcdORlTxJYo6tMyWE9slJbWD7VbqvydQJDZuueV93js9CF1RuKEA8jZxqDgQYAUByiUl9QmaMFoB4QzEKZoAZYIICeU5mqa0gXFKwQSjE6RfQgz7j86T1WGwePVuQ7TbhF2IeJl17lLuWt33BzwLfm_j2vqMl_ZzZ31rEw4OvwYfcvAWa2_wctf0nbc64sVgo84hpkt05nSf7PR3X6C3h_vV7InMF4_Ps7s5aZmETBhvqKu04ZWzTBesaUzDqCu4ocIUkhkOrHWNE2VjhNRWNy2tyrI2ICgITYsLdH3sHWIY30tZbcIu-vGkYlLWlIMs5Zhix1QbQ0rROjXEbqvjQVFQ3zbV0aYabaofm6oeoeIIpTHs1zb-Vf9DfQFLg3kB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779140757</pqid></control><display><type>article</type><title>Korovkin-Type Theorems for Statistically Convergent Sequences of Monotone and Sublinear Operators</title><source>Springer Nature - Complete Springer Journals</source><creator>Gal, Sorin G. ; Iancu, Ionut T.</creator><creatorcontrib>Gal, Sorin G. ; Iancu, Ionut T.</creatorcontrib><description>In this paper, we study the statistical convergence almost everywhere, in measure and in L p in Korovkin-type theorem for monotone and sublinear operators. Our results are illustrated by a series of concrete examples.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-023-01471-9</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Applications of Mathematics ; Convergence ; Mathematics ; Mathematics and Statistics ; Operators ; Sequences ; Theorems</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2023-03, Vol.46 (2), Article 79</ispartof><rights>The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-24b1f8ad48fe2a32bbdb21f34d16d372d402cfbf65bd67aeabc18559d06106a13</cites><orcidid>0000-0002-5743-3144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-023-01471-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-023-01471-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Gal, Sorin G.</creatorcontrib><creatorcontrib>Iancu, Ionut T.</creatorcontrib><title>Korovkin-Type Theorems for Statistically Convergent Sequences of Monotone and Sublinear Operators</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>In this paper, we study the statistical convergence almost everywhere, in measure and in L p in Korovkin-type theorem for monotone and sublinear operators. Our results are illustrated by a series of concrete examples.</description><subject>Applications of Mathematics</subject><subject>Convergence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><subject>Sequences</subject><subject>Theorems</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEhX0DzBZYjacHcdORlTxJYo6tMyWE9slJbWD7VbqvydQJDZuueV93js9CF1RuKEA8jZxqDgQYAUByiUl9QmaMFoB4QzEKZoAZYIICeU5mqa0gXFKwQSjE6RfQgz7j86T1WGwePVuQ7TbhF2IeJl17lLuWt33BzwLfm_j2vqMl_ZzZ31rEw4OvwYfcvAWa2_wctf0nbc64sVgo84hpkt05nSf7PR3X6C3h_vV7InMF4_Ps7s5aZmETBhvqKu04ZWzTBesaUzDqCu4ocIUkhkOrHWNE2VjhNRWNy2tyrI2ICgITYsLdH3sHWIY30tZbcIu-vGkYlLWlIMs5Zhix1QbQ0rROjXEbqvjQVFQ3zbV0aYabaofm6oeoeIIpTHs1zb-Vf9DfQFLg3kB</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Gal, Sorin G.</creator><creator>Iancu, Ionut T.</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5743-3144</orcidid></search><sort><creationdate>20230301</creationdate><title>Korovkin-Type Theorems for Statistically Convergent Sequences of Monotone and Sublinear Operators</title><author>Gal, Sorin G. ; Iancu, Ionut T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-24b1f8ad48fe2a32bbdb21f34d16d372d402cfbf65bd67aeabc18559d06106a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Convergence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><topic>Sequences</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gal, Sorin G.</creatorcontrib><creatorcontrib>Iancu, Ionut T.</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gal, Sorin G.</au><au>Iancu, Ionut T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Korovkin-Type Theorems for Statistically Convergent Sequences of Monotone and Sublinear Operators</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>46</volume><issue>2</issue><artnum>79</artnum><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>In this paper, we study the statistical convergence almost everywhere, in measure and in L p in Korovkin-type theorem for monotone and sublinear operators. Our results are illustrated by a series of concrete examples.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s40840-023-01471-9</doi><orcidid>https://orcid.org/0000-0002-5743-3144</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0126-6705
ispartof Bulletin of the Malaysian Mathematical Sciences Society, 2023-03, Vol.46 (2), Article 79
issn 0126-6705
2180-4206
language eng
recordid cdi_proquest_journals_2779140757
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Convergence
Mathematics
Mathematics and Statistics
Operators
Sequences
Theorems
title Korovkin-Type Theorems for Statistically Convergent Sequences of Monotone and Sublinear Operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Korovkin-Type%20Theorems%20for%20Statistically%20Convergent%20Sequences%20of%20Monotone%20and%20Sublinear%20Operators&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Gal,%20Sorin%20G.&rft.date=2023-03-01&rft.volume=46&rft.issue=2&rft.artnum=79&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-023-01471-9&rft_dat=%3Cproquest_cross%3E2779140757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779140757&rft_id=info:pmid/&rfr_iscdi=true