Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument

The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first‐of‐its‐kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Planets 2023-02, Vol.128 (2), p.n/a
Hauptverfasser: Martínez, G. M., Sebastián, E., Vicente‐Retortillo, A., Smith, M. D., Johnson, J. R., Fischer, E., Savijärvi, H., Toledo, D., Hueso, R., Mora‐Sotomayor, L., Gillespie, H., Munguira, A., Sánchez‐Lavega, A., Lemmon, M. T., Gómez, F., Polkko, J., Mandon, L., Apéstigue, V., Arruego, I., Ramos, M., Conrad, P., Newman, C. E., Torre‐Juarez, M. de la, Jordan, F., Tamppari, L. K., McConnochie, T. H., Harri, A.‐M., Genzer, M., Hieta, M., Zorzano, M.‐P., Siegler, M., Prieto, O., Molina, A., Rodríguez‐Manfredi, J. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Journal of geophysical research. Planets
container_volume 128
creator Martínez, G. M.
Sebastián, E.
Vicente‐Retortillo, A.
Smith, M. D.
Johnson, J. R.
Fischer, E.
Savijärvi, H.
Toledo, D.
Hueso, R.
Mora‐Sotomayor, L.
Gillespie, H.
Munguira, A.
Sánchez‐Lavega, A.
Lemmon, M. T.
Gómez, F.
Polkko, J.
Mandon, L.
Apéstigue, V.
Arruego, I.
Ramos, M.
Conrad, P.
Newman, C. E.
Torre‐Juarez, M. de la
Jordan, F.
Tamppari, L. K.
McConnochie, T. H.
Harri, A.‐M.
Genzer, M.
Hieta, M.
Zorzano, M.‐P.
Siegler, M.
Prieto, O.
Molina, A.
Rodríguez‐Manfredi, J. A.
description The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first‐of‐its‐kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ∼ 6°–174° in Martian Year 36) to determine the surface radiative budget on Mars and to calculate the broadband albedo (0.3–3 μm) as a function of the illumination and viewing geometry. Together with MEDA measurements of ground temperature, we calculate the thermal inertia for homogeneous terrains without the need for numerical thermal models. We found that (a) the observed downwelling atmospheric IR flux is significantly lower than the model predictions. This is likely caused by the strong diurnal variation in aerosol opacity measured by MEDA, which is not accounted for by numerical models. (b) The albedo presents a marked non‐Lambertian behavior, with lowest values near noon and highest values corresponding to low phase angles (i.e., Sun behind the observer). (c) Thermal inertia values ranged between 180 (sand dune) and 605 (bedrock‐dominated material) SI units. (d) Averages of albedo and thermal inertia (spatial resolution of ∼3–4 m2) along Perseverance's traverse are in very good agreement with collocated retrievals of thermal inertia from Thermal Emission Imaging System (spatial resolution of 100 m per pixel) and of bolometric albedo in the 0.25–2.9 μm range from (spatial resolution of ∼300 km2). The results presented here are important to validate model predictions and provide ground‐truth to orbital measurements. Plain Language Summary We analyzed first‐of‐its‐kind measurements from the weather station on board NASA's Perseverance rover. These include the incident solar radiation and the amount that is reflected by the surface, as well as the thermal atmospheric forcing (greenhouse effect) and the thermal heat released by the surface. These measurements comprise the radiant energy budget, which is fundamental to understanding Mars' weather through its impact on temperatures. From the solar measurements, we obtained the surface reflectance for a variety of illuminating and viewing geometries. We found that the thermal atmospheric forcing is weaker than expected from models, likely because of the strong diurnal variation in atmospheric aerosols observed by the rover, which is not accounted for by models. We also found that the surface refl
doi_str_mv 10.1029/2022JE007537
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779033337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779033337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-2ba35d60da2bc0a60de9738b2cb9f607c64ee4fd46b4b3f90d1a9f3c0b6f37b43</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSsEEtPYjQ8QiWsLTtI2zXGMbmzaNAnGuUpad3-0tSNpQeXTExhInHgXW_ZPz9bzvGsKtxSYvGPA2CwFEBEXZ16P0VgGkgKc__YgxaU3sHYHTokbUd7zuufWlCpHklZo1h25b4s1Nj4Z7jUWtU9UVZDVBs1B7cnUIc1WEdWQGX6gqcnIqAaNTxbKWMdastQWzRsWZGzqA2k2-L0i7jcgi_Rh6DxsY9oDVs2Vd1GqvcXBT-17L-N0NXoM5svJdDScBzlPkihgWvGoiKFQTOegXINS8ESzXMsyBpHHIWJYFmGsQ81LCQVVsuQ56LjkQoe8792cfI-mfm3RNtmubk3lTmZMCAncSTjKP1G5qa01WGZHsz0o02UUsq98s7_5Opyf8PftHrt_2Ww2eUoZozTin-FUebA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779033337</pqid></control><display><type>article</type><title>Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument</title><source>Wiley Journals</source><source>Wiley-Blackwell Full Collection</source><source>Alma/SFX Local Collection</source><creator>Martínez, G. M. ; Sebastián, E. ; Vicente‐Retortillo, A. ; Smith, M. D. ; Johnson, J. R. ; Fischer, E. ; Savijärvi, H. ; Toledo, D. ; Hueso, R. ; Mora‐Sotomayor, L. ; Gillespie, H. ; Munguira, A. ; Sánchez‐Lavega, A. ; Lemmon, M. T. ; Gómez, F. ; Polkko, J. ; Mandon, L. ; Apéstigue, V. ; Arruego, I. ; Ramos, M. ; Conrad, P. ; Newman, C. E. ; Torre‐Juarez, M. de la ; Jordan, F. ; Tamppari, L. K. ; McConnochie, T. H. ; Harri, A.‐M. ; Genzer, M. ; Hieta, M. ; Zorzano, M.‐P. ; Siegler, M. ; Prieto, O. ; Molina, A. ; Rodríguez‐Manfredi, J. A.</creator><creatorcontrib>Martínez, G. M. ; Sebastián, E. ; Vicente‐Retortillo, A. ; Smith, M. D. ; Johnson, J. R. ; Fischer, E. ; Savijärvi, H. ; Toledo, D. ; Hueso, R. ; Mora‐Sotomayor, L. ; Gillespie, H. ; Munguira, A. ; Sánchez‐Lavega, A. ; Lemmon, M. T. ; Gómez, F. ; Polkko, J. ; Mandon, L. ; Apéstigue, V. ; Arruego, I. ; Ramos, M. ; Conrad, P. ; Newman, C. E. ; Torre‐Juarez, M. de la ; Jordan, F. ; Tamppari, L. K. ; McConnochie, T. H. ; Harri, A.‐M. ; Genzer, M. ; Hieta, M. ; Zorzano, M.‐P. ; Siegler, M. ; Prieto, O. ; Molina, A. ; Rodríguez‐Manfredi, J. A.</creatorcontrib><description>The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first‐of‐its‐kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ∼ 6°–174° in Martian Year 36) to determine the surface radiative budget on Mars and to calculate the broadband albedo (0.3–3 μm) as a function of the illumination and viewing geometry. Together with MEDA measurements of ground temperature, we calculate the thermal inertia for homogeneous terrains without the need for numerical thermal models. We found that (a) the observed downwelling atmospheric IR flux is significantly lower than the model predictions. This is likely caused by the strong diurnal variation in aerosol opacity measured by MEDA, which is not accounted for by numerical models. (b) The albedo presents a marked non‐Lambertian behavior, with lowest values near noon and highest values corresponding to low phase angles (i.e., Sun behind the observer). (c) Thermal inertia values ranged between 180 (sand dune) and 605 (bedrock‐dominated material) SI units. (d) Averages of albedo and thermal inertia (spatial resolution of ∼3–4 m2) along Perseverance's traverse are in very good agreement with collocated retrievals of thermal inertia from Thermal Emission Imaging System (spatial resolution of 100 m per pixel) and of bolometric albedo in the 0.25–2.9 μm range from (spatial resolution of ∼300 km2). The results presented here are important to validate model predictions and provide ground‐truth to orbital measurements. Plain Language Summary We analyzed first‐of‐its‐kind measurements from the weather station on board NASA's Perseverance rover. These include the incident solar radiation and the amount that is reflected by the surface, as well as the thermal atmospheric forcing (greenhouse effect) and the thermal heat released by the surface. These measurements comprise the radiant energy budget, which is fundamental to understanding Mars' weather through its impact on temperatures. From the solar measurements, we obtained the surface reflectance for a variety of illuminating and viewing geometries. We found that the thermal atmospheric forcing is weaker than expected from models, likely because of the strong diurnal variation in atmospheric aerosols observed by the rover, which is not accounted for by models. We also found that the surface reflectance is not uniform from all directions, but that it decreases when the Sun is highest in the sky (near noon) and increases when the Sun is directly behind the observer (sunset and sunrise), and thus the shadows cast by their roughness elements (e.g., pores and pits) are minimized. Because models neither consider diurnal variations in atmospheric aerosols nor in the surface reflectance, the results presented here are important to validate model predictions for future human exploration. Key Points Mars Environmental Monitoring Station (MEDA) allows the first in situ determination of the surface radiative budget on Mars, providing key constraints on numerical models MEDA allows the direct determination of thermal inertia and albedo, providing ground‐truth to satellite retrievals Albedo shows a strong non‐Lambertian behavior, with minimum values at noon and higher values toward sunrise and sunset</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1029/2022JE007537</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aerosols ; Albedo ; Angles (geometry) ; Atmospheric aerosols ; Atmospheric forcing ; Atmospheric models ; Bedrock ; Broadband ; climate ; Diurnal variations ; Downwelling ; Dunes ; Energy budget ; Fluctuations ; Greenhouse effect ; Mars ; Mars 2020 ; Mars craters ; Mars environment ; Mars missions ; Mars surface ; Mathematical models ; Modelling ; Numerical models ; Opacity ; radiation ; Reflectance ; Shadows ; Solar radiation ; Spatial resolution ; Specific heat ; Sunrise ; Sunset ; surface ; Surface energy ; Temperature ; Thermal analysis ; Thermal emission ; Thermal inertia ; Thermal models ; Upwelling ; Viewing ; Weather stations</subject><ispartof>Journal of geophysical research. Planets, 2023-02, Vol.128 (2), p.n/a</ispartof><rights>2023 Lunar and Planetary Institute and Jet Propulsion Laboratory, California Institute of Technology. Government sponsorship acknowledged. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-2ba35d60da2bc0a60de9738b2cb9f607c64ee4fd46b4b3f90d1a9f3c0b6f37b43</citedby><cites>FETCH-LOGICAL-c3885-2ba35d60da2bc0a60de9738b2cb9f607c64ee4fd46b4b3f90d1a9f3c0b6f37b43</cites><orcidid>0000-0001-6927-1368 ; 0000-0002-5038-2022 ; 0000-0002-8209-1190 ; 0000-0002-9310-0742 ; 0000-0001-9705-9743 ; 0000-0002-7940-3931 ; 0000-0002-4504-5136 ; 0000-0002-5429-0395 ; 0000-0002-0103-1891 ; 0000-0002-5586-4901 ; 0000-0001-5124-6375 ; 0000-0002-7601-1158 ; 0000-0001-9990-8817 ; 0000-0002-2098-5295 ; 0000-0001-5885-236X ; 0000-0002-4553-7624 ; 0000-0001-7355-1522 ; 0000-0002-4349-8019 ; 0000-0003-0169-123X ; 0000-0001-9977-7060 ; 0000-0002-7563-0360 ; 0000-0002-1677-6327 ; 0000-0003-1393-5297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022JE007537$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022JE007537$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Martínez, G. M.</creatorcontrib><creatorcontrib>Sebastián, E.</creatorcontrib><creatorcontrib>Vicente‐Retortillo, A.</creatorcontrib><creatorcontrib>Smith, M. D.</creatorcontrib><creatorcontrib>Johnson, J. R.</creatorcontrib><creatorcontrib>Fischer, E.</creatorcontrib><creatorcontrib>Savijärvi, H.</creatorcontrib><creatorcontrib>Toledo, D.</creatorcontrib><creatorcontrib>Hueso, R.</creatorcontrib><creatorcontrib>Mora‐Sotomayor, L.</creatorcontrib><creatorcontrib>Gillespie, H.</creatorcontrib><creatorcontrib>Munguira, A.</creatorcontrib><creatorcontrib>Sánchez‐Lavega, A.</creatorcontrib><creatorcontrib>Lemmon, M. T.</creatorcontrib><creatorcontrib>Gómez, F.</creatorcontrib><creatorcontrib>Polkko, J.</creatorcontrib><creatorcontrib>Mandon, L.</creatorcontrib><creatorcontrib>Apéstigue, V.</creatorcontrib><creatorcontrib>Arruego, I.</creatorcontrib><creatorcontrib>Ramos, M.</creatorcontrib><creatorcontrib>Conrad, P.</creatorcontrib><creatorcontrib>Newman, C. E.</creatorcontrib><creatorcontrib>Torre‐Juarez, M. de la</creatorcontrib><creatorcontrib>Jordan, F.</creatorcontrib><creatorcontrib>Tamppari, L. K.</creatorcontrib><creatorcontrib>McConnochie, T. H.</creatorcontrib><creatorcontrib>Harri, A.‐M.</creatorcontrib><creatorcontrib>Genzer, M.</creatorcontrib><creatorcontrib>Hieta, M.</creatorcontrib><creatorcontrib>Zorzano, M.‐P.</creatorcontrib><creatorcontrib>Siegler, M.</creatorcontrib><creatorcontrib>Prieto, O.</creatorcontrib><creatorcontrib>Molina, A.</creatorcontrib><creatorcontrib>Rodríguez‐Manfredi, J. A.</creatorcontrib><title>Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument</title><title>Journal of geophysical research. Planets</title><description>The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first‐of‐its‐kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ∼ 6°–174° in Martian Year 36) to determine the surface radiative budget on Mars and to calculate the broadband albedo (0.3–3 μm) as a function of the illumination and viewing geometry. Together with MEDA measurements of ground temperature, we calculate the thermal inertia for homogeneous terrains without the need for numerical thermal models. We found that (a) the observed downwelling atmospheric IR flux is significantly lower than the model predictions. This is likely caused by the strong diurnal variation in aerosol opacity measured by MEDA, which is not accounted for by numerical models. (b) The albedo presents a marked non‐Lambertian behavior, with lowest values near noon and highest values corresponding to low phase angles (i.e., Sun behind the observer). (c) Thermal inertia values ranged between 180 (sand dune) and 605 (bedrock‐dominated material) SI units. (d) Averages of albedo and thermal inertia (spatial resolution of ∼3–4 m2) along Perseverance's traverse are in very good agreement with collocated retrievals of thermal inertia from Thermal Emission Imaging System (spatial resolution of 100 m per pixel) and of bolometric albedo in the 0.25–2.9 μm range from (spatial resolution of ∼300 km2). The results presented here are important to validate model predictions and provide ground‐truth to orbital measurements. Plain Language Summary We analyzed first‐of‐its‐kind measurements from the weather station on board NASA's Perseverance rover. These include the incident solar radiation and the amount that is reflected by the surface, as well as the thermal atmospheric forcing (greenhouse effect) and the thermal heat released by the surface. These measurements comprise the radiant energy budget, which is fundamental to understanding Mars' weather through its impact on temperatures. From the solar measurements, we obtained the surface reflectance for a variety of illuminating and viewing geometries. We found that the thermal atmospheric forcing is weaker than expected from models, likely because of the strong diurnal variation in atmospheric aerosols observed by the rover, which is not accounted for by models. We also found that the surface reflectance is not uniform from all directions, but that it decreases when the Sun is highest in the sky (near noon) and increases when the Sun is directly behind the observer (sunset and sunrise), and thus the shadows cast by their roughness elements (e.g., pores and pits) are minimized. Because models neither consider diurnal variations in atmospheric aerosols nor in the surface reflectance, the results presented here are important to validate model predictions for future human exploration. Key Points Mars Environmental Monitoring Station (MEDA) allows the first in situ determination of the surface radiative budget on Mars, providing key constraints on numerical models MEDA allows the direct determination of thermal inertia and albedo, providing ground‐truth to satellite retrievals Albedo shows a strong non‐Lambertian behavior, with minimum values at noon and higher values toward sunrise and sunset</description><subject>Aerosols</subject><subject>Albedo</subject><subject>Angles (geometry)</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric forcing</subject><subject>Atmospheric models</subject><subject>Bedrock</subject><subject>Broadband</subject><subject>climate</subject><subject>Diurnal variations</subject><subject>Downwelling</subject><subject>Dunes</subject><subject>Energy budget</subject><subject>Fluctuations</subject><subject>Greenhouse effect</subject><subject>Mars</subject><subject>Mars 2020</subject><subject>Mars craters</subject><subject>Mars environment</subject><subject>Mars missions</subject><subject>Mars surface</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Numerical models</subject><subject>Opacity</subject><subject>radiation</subject><subject>Reflectance</subject><subject>Shadows</subject><subject>Solar radiation</subject><subject>Spatial resolution</subject><subject>Specific heat</subject><subject>Sunrise</subject><subject>Sunset</subject><subject>surface</subject><subject>Surface energy</subject><subject>Temperature</subject><subject>Thermal analysis</subject><subject>Thermal emission</subject><subject>Thermal inertia</subject><subject>Thermal models</subject><subject>Upwelling</subject><subject>Viewing</subject><subject>Weather stations</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kE9PwzAMxSsEEtPYjQ8QiWsLTtI2zXGMbmzaNAnGuUpad3-0tSNpQeXTExhInHgXW_ZPz9bzvGsKtxSYvGPA2CwFEBEXZ16P0VgGkgKc__YgxaU3sHYHTokbUd7zuufWlCpHklZo1h25b4s1Nj4Z7jUWtU9UVZDVBs1B7cnUIc1WEdWQGX6gqcnIqAaNTxbKWMdastQWzRsWZGzqA2k2-L0i7jcgi_Rh6DxsY9oDVs2Vd1GqvcXBT-17L-N0NXoM5svJdDScBzlPkihgWvGoiKFQTOegXINS8ESzXMsyBpHHIWJYFmGsQ81LCQVVsuQ56LjkQoe8792cfI-mfm3RNtmubk3lTmZMCAncSTjKP1G5qa01WGZHsz0o02UUsq98s7_5Opyf8PftHrt_2Ww2eUoZozTin-FUebA</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Martínez, G. M.</creator><creator>Sebastián, E.</creator><creator>Vicente‐Retortillo, A.</creator><creator>Smith, M. D.</creator><creator>Johnson, J. R.</creator><creator>Fischer, E.</creator><creator>Savijärvi, H.</creator><creator>Toledo, D.</creator><creator>Hueso, R.</creator><creator>Mora‐Sotomayor, L.</creator><creator>Gillespie, H.</creator><creator>Munguira, A.</creator><creator>Sánchez‐Lavega, A.</creator><creator>Lemmon, M. T.</creator><creator>Gómez, F.</creator><creator>Polkko, J.</creator><creator>Mandon, L.</creator><creator>Apéstigue, V.</creator><creator>Arruego, I.</creator><creator>Ramos, M.</creator><creator>Conrad, P.</creator><creator>Newman, C. E.</creator><creator>Torre‐Juarez, M. de la</creator><creator>Jordan, F.</creator><creator>Tamppari, L. K.</creator><creator>McConnochie, T. H.</creator><creator>Harri, A.‐M.</creator><creator>Genzer, M.</creator><creator>Hieta, M.</creator><creator>Zorzano, M.‐P.</creator><creator>Siegler, M.</creator><creator>Prieto, O.</creator><creator>Molina, A.</creator><creator>Rodríguez‐Manfredi, J. A.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6927-1368</orcidid><orcidid>https://orcid.org/0000-0002-5038-2022</orcidid><orcidid>https://orcid.org/0000-0002-8209-1190</orcidid><orcidid>https://orcid.org/0000-0002-9310-0742</orcidid><orcidid>https://orcid.org/0000-0001-9705-9743</orcidid><orcidid>https://orcid.org/0000-0002-7940-3931</orcidid><orcidid>https://orcid.org/0000-0002-4504-5136</orcidid><orcidid>https://orcid.org/0000-0002-5429-0395</orcidid><orcidid>https://orcid.org/0000-0002-0103-1891</orcidid><orcidid>https://orcid.org/0000-0002-5586-4901</orcidid><orcidid>https://orcid.org/0000-0001-5124-6375</orcidid><orcidid>https://orcid.org/0000-0002-7601-1158</orcidid><orcidid>https://orcid.org/0000-0001-9990-8817</orcidid><orcidid>https://orcid.org/0000-0002-2098-5295</orcidid><orcidid>https://orcid.org/0000-0001-5885-236X</orcidid><orcidid>https://orcid.org/0000-0002-4553-7624</orcidid><orcidid>https://orcid.org/0000-0001-7355-1522</orcidid><orcidid>https://orcid.org/0000-0002-4349-8019</orcidid><orcidid>https://orcid.org/0000-0003-0169-123X</orcidid><orcidid>https://orcid.org/0000-0001-9977-7060</orcidid><orcidid>https://orcid.org/0000-0002-7563-0360</orcidid><orcidid>https://orcid.org/0000-0002-1677-6327</orcidid><orcidid>https://orcid.org/0000-0003-1393-5297</orcidid></search><sort><creationdate>202302</creationdate><title>Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument</title><author>Martínez, G. M. ; Sebastián, E. ; Vicente‐Retortillo, A. ; Smith, M. D. ; Johnson, J. R. ; Fischer, E. ; Savijärvi, H. ; Toledo, D. ; Hueso, R. ; Mora‐Sotomayor, L. ; Gillespie, H. ; Munguira, A. ; Sánchez‐Lavega, A. ; Lemmon, M. T. ; Gómez, F. ; Polkko, J. ; Mandon, L. ; Apéstigue, V. ; Arruego, I. ; Ramos, M. ; Conrad, P. ; Newman, C. E. ; Torre‐Juarez, M. de la ; Jordan, F. ; Tamppari, L. K. ; McConnochie, T. H. ; Harri, A.‐M. ; Genzer, M. ; Hieta, M. ; Zorzano, M.‐P. ; Siegler, M. ; Prieto, O. ; Molina, A. ; Rodríguez‐Manfredi, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-2ba35d60da2bc0a60de9738b2cb9f607c64ee4fd46b4b3f90d1a9f3c0b6f37b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Albedo</topic><topic>Angles (geometry)</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric forcing</topic><topic>Atmospheric models</topic><topic>Bedrock</topic><topic>Broadband</topic><topic>climate</topic><topic>Diurnal variations</topic><topic>Downwelling</topic><topic>Dunes</topic><topic>Energy budget</topic><topic>Fluctuations</topic><topic>Greenhouse effect</topic><topic>Mars</topic><topic>Mars 2020</topic><topic>Mars craters</topic><topic>Mars environment</topic><topic>Mars missions</topic><topic>Mars surface</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Numerical models</topic><topic>Opacity</topic><topic>radiation</topic><topic>Reflectance</topic><topic>Shadows</topic><topic>Solar radiation</topic><topic>Spatial resolution</topic><topic>Specific heat</topic><topic>Sunrise</topic><topic>Sunset</topic><topic>surface</topic><topic>Surface energy</topic><topic>Temperature</topic><topic>Thermal analysis</topic><topic>Thermal emission</topic><topic>Thermal inertia</topic><topic>Thermal models</topic><topic>Upwelling</topic><topic>Viewing</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez, G. M.</creatorcontrib><creatorcontrib>Sebastián, E.</creatorcontrib><creatorcontrib>Vicente‐Retortillo, A.</creatorcontrib><creatorcontrib>Smith, M. D.</creatorcontrib><creatorcontrib>Johnson, J. R.</creatorcontrib><creatorcontrib>Fischer, E.</creatorcontrib><creatorcontrib>Savijärvi, H.</creatorcontrib><creatorcontrib>Toledo, D.</creatorcontrib><creatorcontrib>Hueso, R.</creatorcontrib><creatorcontrib>Mora‐Sotomayor, L.</creatorcontrib><creatorcontrib>Gillespie, H.</creatorcontrib><creatorcontrib>Munguira, A.</creatorcontrib><creatorcontrib>Sánchez‐Lavega, A.</creatorcontrib><creatorcontrib>Lemmon, M. T.</creatorcontrib><creatorcontrib>Gómez, F.</creatorcontrib><creatorcontrib>Polkko, J.</creatorcontrib><creatorcontrib>Mandon, L.</creatorcontrib><creatorcontrib>Apéstigue, V.</creatorcontrib><creatorcontrib>Arruego, I.</creatorcontrib><creatorcontrib>Ramos, M.</creatorcontrib><creatorcontrib>Conrad, P.</creatorcontrib><creatorcontrib>Newman, C. E.</creatorcontrib><creatorcontrib>Torre‐Juarez, M. de la</creatorcontrib><creatorcontrib>Jordan, F.</creatorcontrib><creatorcontrib>Tamppari, L. K.</creatorcontrib><creatorcontrib>McConnochie, T. H.</creatorcontrib><creatorcontrib>Harri, A.‐M.</creatorcontrib><creatorcontrib>Genzer, M.</creatorcontrib><creatorcontrib>Hieta, M.</creatorcontrib><creatorcontrib>Zorzano, M.‐P.</creatorcontrib><creatorcontrib>Siegler, M.</creatorcontrib><creatorcontrib>Prieto, O.</creatorcontrib><creatorcontrib>Molina, A.</creatorcontrib><creatorcontrib>Rodríguez‐Manfredi, J. A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez, G. M.</au><au>Sebastián, E.</au><au>Vicente‐Retortillo, A.</au><au>Smith, M. D.</au><au>Johnson, J. R.</au><au>Fischer, E.</au><au>Savijärvi, H.</au><au>Toledo, D.</au><au>Hueso, R.</au><au>Mora‐Sotomayor, L.</au><au>Gillespie, H.</au><au>Munguira, A.</au><au>Sánchez‐Lavega, A.</au><au>Lemmon, M. T.</au><au>Gómez, F.</au><au>Polkko, J.</au><au>Mandon, L.</au><au>Apéstigue, V.</au><au>Arruego, I.</au><au>Ramos, M.</au><au>Conrad, P.</au><au>Newman, C. E.</au><au>Torre‐Juarez, M. de la</au><au>Jordan, F.</au><au>Tamppari, L. K.</au><au>McConnochie, T. H.</au><au>Harri, A.‐M.</au><au>Genzer, M.</au><au>Hieta, M.</au><au>Zorzano, M.‐P.</au><au>Siegler, M.</au><au>Prieto, O.</au><au>Molina, A.</au><au>Rodríguez‐Manfredi, J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument</atitle><jtitle>Journal of geophysical research. Planets</jtitle><date>2023-02</date><risdate>2023</risdate><volume>128</volume><issue>2</issue><epage>n/a</epage><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first‐of‐its‐kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ∼ 6°–174° in Martian Year 36) to determine the surface radiative budget on Mars and to calculate the broadband albedo (0.3–3 μm) as a function of the illumination and viewing geometry. Together with MEDA measurements of ground temperature, we calculate the thermal inertia for homogeneous terrains without the need for numerical thermal models. We found that (a) the observed downwelling atmospheric IR flux is significantly lower than the model predictions. This is likely caused by the strong diurnal variation in aerosol opacity measured by MEDA, which is not accounted for by numerical models. (b) The albedo presents a marked non‐Lambertian behavior, with lowest values near noon and highest values corresponding to low phase angles (i.e., Sun behind the observer). (c) Thermal inertia values ranged between 180 (sand dune) and 605 (bedrock‐dominated material) SI units. (d) Averages of albedo and thermal inertia (spatial resolution of ∼3–4 m2) along Perseverance's traverse are in very good agreement with collocated retrievals of thermal inertia from Thermal Emission Imaging System (spatial resolution of 100 m per pixel) and of bolometric albedo in the 0.25–2.9 μm range from (spatial resolution of ∼300 km2). The results presented here are important to validate model predictions and provide ground‐truth to orbital measurements. Plain Language Summary We analyzed first‐of‐its‐kind measurements from the weather station on board NASA's Perseverance rover. These include the incident solar radiation and the amount that is reflected by the surface, as well as the thermal atmospheric forcing (greenhouse effect) and the thermal heat released by the surface. These measurements comprise the radiant energy budget, which is fundamental to understanding Mars' weather through its impact on temperatures. From the solar measurements, we obtained the surface reflectance for a variety of illuminating and viewing geometries. We found that the thermal atmospheric forcing is weaker than expected from models, likely because of the strong diurnal variation in atmospheric aerosols observed by the rover, which is not accounted for by models. We also found that the surface reflectance is not uniform from all directions, but that it decreases when the Sun is highest in the sky (near noon) and increases when the Sun is directly behind the observer (sunset and sunrise), and thus the shadows cast by their roughness elements (e.g., pores and pits) are minimized. Because models neither consider diurnal variations in atmospheric aerosols nor in the surface reflectance, the results presented here are important to validate model predictions for future human exploration. Key Points Mars Environmental Monitoring Station (MEDA) allows the first in situ determination of the surface radiative budget on Mars, providing key constraints on numerical models MEDA allows the direct determination of thermal inertia and albedo, providing ground‐truth to satellite retrievals Albedo shows a strong non‐Lambertian behavior, with minimum values at noon and higher values toward sunrise and sunset</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2022JE007537</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6927-1368</orcidid><orcidid>https://orcid.org/0000-0002-5038-2022</orcidid><orcidid>https://orcid.org/0000-0002-8209-1190</orcidid><orcidid>https://orcid.org/0000-0002-9310-0742</orcidid><orcidid>https://orcid.org/0000-0001-9705-9743</orcidid><orcidid>https://orcid.org/0000-0002-7940-3931</orcidid><orcidid>https://orcid.org/0000-0002-4504-5136</orcidid><orcidid>https://orcid.org/0000-0002-5429-0395</orcidid><orcidid>https://orcid.org/0000-0002-0103-1891</orcidid><orcidid>https://orcid.org/0000-0002-5586-4901</orcidid><orcidid>https://orcid.org/0000-0001-5124-6375</orcidid><orcidid>https://orcid.org/0000-0002-7601-1158</orcidid><orcidid>https://orcid.org/0000-0001-9990-8817</orcidid><orcidid>https://orcid.org/0000-0002-2098-5295</orcidid><orcidid>https://orcid.org/0000-0001-5885-236X</orcidid><orcidid>https://orcid.org/0000-0002-4553-7624</orcidid><orcidid>https://orcid.org/0000-0001-7355-1522</orcidid><orcidid>https://orcid.org/0000-0002-4349-8019</orcidid><orcidid>https://orcid.org/0000-0003-0169-123X</orcidid><orcidid>https://orcid.org/0000-0001-9977-7060</orcidid><orcidid>https://orcid.org/0000-0002-7563-0360</orcidid><orcidid>https://orcid.org/0000-0002-1677-6327</orcidid><orcidid>https://orcid.org/0000-0003-1393-5297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9097
ispartof Journal of geophysical research. Planets, 2023-02, Vol.128 (2), p.n/a
issn 2169-9097
2169-9100
language eng
recordid cdi_proquest_journals_2779033337
source Wiley Journals; Wiley-Blackwell Full Collection; Alma/SFX Local Collection
subjects Aerosols
Albedo
Angles (geometry)
Atmospheric aerosols
Atmospheric forcing
Atmospheric models
Bedrock
Broadband
climate
Diurnal variations
Downwelling
Dunes
Energy budget
Fluctuations
Greenhouse effect
Mars
Mars 2020
Mars craters
Mars environment
Mars missions
Mars surface
Mathematical models
Modelling
Numerical models
Opacity
radiation
Reflectance
Shadows
Solar radiation
Spatial resolution
Specific heat
Sunrise
Sunset
surface
Surface energy
Temperature
Thermal analysis
Thermal emission
Thermal inertia
Thermal models
Upwelling
Viewing
Weather stations
title Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Energy%20Budget,%20Albedo,%20and%20Thermal%20Inertia%20at%20Jezero%20Crater,%20Mars,%20as%20Observed%20From%20the%20Mars%202020%20MEDA%20Instrument&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Mart%C3%ADnez,%20G.%20M.&rft.date=2023-02&rft.volume=128&rft.issue=2&rft.epage=n/a&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1029/2022JE007537&rft_dat=%3Cproquest_cross%3E2779033337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779033337&rft_id=info:pmid/&rfr_iscdi=true