Filter‐Free Narrowband Photomultiplication‐Type Planar Heterojunction Organic Photodetectors

Filter‐free narrowband photomultiplication‐type planar heterojunction (PHJ) organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The thick front donor layer is employed as an optical field adjusting (OFA) layer. The sequentially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-02, Vol.33 (9), p.n/a
Hauptverfasser: Zhao, Zijin, Xu, Chunyu, Ma, Yao, Ma, Xiaoling, Zhu, Xixiang, Niu, Lianbin, Shen, Liang, Zhou, Zhengji, Zhang, Fujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced functional materials
container_volume 33
creator Zhao, Zijin
Xu, Chunyu
Ma, Yao
Ma, Xiaoling
Zhu, Xixiang
Niu, Lianbin
Shen, Liang
Zhou, Zhengji
Zhang, Fujun
description Filter‐free narrowband photomultiplication‐type planar heterojunction (PHJ) organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The thick front donor layer is employed as an optical field adjusting (OFA) layer. The sequentially coated PC71BM will diffuse slightly into OFA layer, which works as interfacial electron traps to capture photogenerated electrons for assisting hole tunneling injection. The P3HT/PC71BM‐based PM‐PHOPDs exhibit narrowband response with full‐width of half‐maximum of 32 nm and external quantum efficiency (EQE) of 1700% at 650 nm under −20 V bias. Due to the enhanced hole transport and reduced charge recombination in PHJ compared to those in bulk heterojunction (BHJ), the EQE of P3HT/PC71BM‐based narrowband PM‐PHOPDs is twice as P3HT:PC71BM BHJ‐based narrowband PM‐OPDs under the same bias. The response peak of PM‐PHOPDs is adjusted from 650 to 695 or 745 nm by incorporating SMPV1 or DRCN5T in OFA layers due to the red‐shifted absorption edge. The EQEs of 3600% at 695 nm and 870% at 745 nm are obtained for P3HT:SMPV1 and P3HT:DRCN5T‐based PM‐PHOPDs under −20 V bias, respectively. This work provides a smart strategy to achieve narrowband PM‐OPDs by designing different OFA layers. Filter‐free narrowband photomultiplication‐type planar heterojunction organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The narrowband response of PM‐PHOPDs shows tunable peak position from 650 to 695 or 745 nm by varying the donor layer from P3HT to P3HT:SMPV1 (3:1, w/w) or P3HT:DRCN5T (3:1, w/w).
doi_str_mv 10.1002/adfm.202212149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2778881151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778881151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-5babfd83c82471c7ef739d7f04932015bf057ff7943840440bf891a6d3f1e0673</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMkdiTvHZTuyMVSEUqUCHIrEZx7EhVRoHJ1HVjUfgGXkSUgWVkelO-r_vTvoRugQ8AYzJtcrtZkIwIUCAJUdoBDHEIcVEHB92eDlFZ02zxhg4p2yEXtOibI3__vxKvTHBo_LebTNV5cHy3bVu05VtUZeFVm3hqp5a7WoTLEtVKR_MTW-6dVfpfRg8-TdVFXoQ8z7TrfPNOTqxqmzMxe8co-f0djWbh4unu_vZdBFqCjwJo0xlNhdUC8I4aG4sp0nOLWYJJRiizOKIW8sTRgXDjOHMigRUnFMLBsecjtHVcLf27qMzTSvXrvNV_1ISzoUQABH01GSgtHdN442VtS82yu8kYLlvUe5blIcWeyEZhG1Rmt0_tJzepA9_7g-oR3lp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778881151</pqid></control><display><type>article</type><title>Filter‐Free Narrowband Photomultiplication‐Type Planar Heterojunction Organic Photodetectors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Zijin ; Xu, Chunyu ; Ma, Yao ; Ma, Xiaoling ; Zhu, Xixiang ; Niu, Lianbin ; Shen, Liang ; Zhou, Zhengji ; Zhang, Fujun</creator><creatorcontrib>Zhao, Zijin ; Xu, Chunyu ; Ma, Yao ; Ma, Xiaoling ; Zhu, Xixiang ; Niu, Lianbin ; Shen, Liang ; Zhou, Zhengji ; Zhang, Fujun</creatorcontrib><description>Filter‐free narrowband photomultiplication‐type planar heterojunction (PHJ) organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The thick front donor layer is employed as an optical field adjusting (OFA) layer. The sequentially coated PC71BM will diffuse slightly into OFA layer, which works as interfacial electron traps to capture photogenerated electrons for assisting hole tunneling injection. The P3HT/PC71BM‐based PM‐PHOPDs exhibit narrowband response with full‐width of half‐maximum of 32 nm and external quantum efficiency (EQE) of 1700% at 650 nm under −20 V bias. Due to the enhanced hole transport and reduced charge recombination in PHJ compared to those in bulk heterojunction (BHJ), the EQE of P3HT/PC71BM‐based narrowband PM‐PHOPDs is twice as P3HT:PC71BM BHJ‐based narrowband PM‐OPDs under the same bias. The response peak of PM‐PHOPDs is adjusted from 650 to 695 or 745 nm by incorporating SMPV1 or DRCN5T in OFA layers due to the red‐shifted absorption edge. The EQEs of 3600% at 695 nm and 870% at 745 nm are obtained for P3HT:SMPV1 and P3HT:DRCN5T‐based PM‐PHOPDs under −20 V bias, respectively. This work provides a smart strategy to achieve narrowband PM‐OPDs by designing different OFA layers. Filter‐free narrowband photomultiplication‐type planar heterojunction organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The narrowband response of PM‐PHOPDs shows tunable peak position from 650 to 695 or 745 nm by varying the donor layer from P3HT to P3HT:SMPV1 (3:1, w/w) or P3HT:DRCN5T (3:1, w/w).</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202212149</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bias ; Electron traps ; Heterojunctions ; Materials science ; Narrowband ; organic photodetectors ; Photometers ; photomultiplication‐type ; planar heterojunctions ; Quantum efficiency</subject><ispartof>Advanced functional materials, 2023-02, Vol.33 (9), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-5babfd83c82471c7ef739d7f04932015bf057ff7943840440bf891a6d3f1e0673</citedby><cites>FETCH-LOGICAL-c3179-5babfd83c82471c7ef739d7f04932015bf057ff7943840440bf891a6d3f1e0673</cites><orcidid>0000-0003-2829-0735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202212149$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202212149$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhao, Zijin</creatorcontrib><creatorcontrib>Xu, Chunyu</creatorcontrib><creatorcontrib>Ma, Yao</creatorcontrib><creatorcontrib>Ma, Xiaoling</creatorcontrib><creatorcontrib>Zhu, Xixiang</creatorcontrib><creatorcontrib>Niu, Lianbin</creatorcontrib><creatorcontrib>Shen, Liang</creatorcontrib><creatorcontrib>Zhou, Zhengji</creatorcontrib><creatorcontrib>Zhang, Fujun</creatorcontrib><title>Filter‐Free Narrowband Photomultiplication‐Type Planar Heterojunction Organic Photodetectors</title><title>Advanced functional materials</title><description>Filter‐free narrowband photomultiplication‐type planar heterojunction (PHJ) organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The thick front donor layer is employed as an optical field adjusting (OFA) layer. The sequentially coated PC71BM will diffuse slightly into OFA layer, which works as interfacial electron traps to capture photogenerated electrons for assisting hole tunneling injection. The P3HT/PC71BM‐based PM‐PHOPDs exhibit narrowband response with full‐width of half‐maximum of 32 nm and external quantum efficiency (EQE) of 1700% at 650 nm under −20 V bias. Due to the enhanced hole transport and reduced charge recombination in PHJ compared to those in bulk heterojunction (BHJ), the EQE of P3HT/PC71BM‐based narrowband PM‐PHOPDs is twice as P3HT:PC71BM BHJ‐based narrowband PM‐OPDs under the same bias. The response peak of PM‐PHOPDs is adjusted from 650 to 695 or 745 nm by incorporating SMPV1 or DRCN5T in OFA layers due to the red‐shifted absorption edge. The EQEs of 3600% at 695 nm and 870% at 745 nm are obtained for P3HT:SMPV1 and P3HT:DRCN5T‐based PM‐PHOPDs under −20 V bias, respectively. This work provides a smart strategy to achieve narrowband PM‐OPDs by designing different OFA layers. Filter‐free narrowband photomultiplication‐type planar heterojunction organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The narrowband response of PM‐PHOPDs shows tunable peak position from 650 to 695 or 745 nm by varying the donor layer from P3HT to P3HT:SMPV1 (3:1, w/w) or P3HT:DRCN5T (3:1, w/w).</description><subject>Bias</subject><subject>Electron traps</subject><subject>Heterojunctions</subject><subject>Materials science</subject><subject>Narrowband</subject><subject>organic photodetectors</subject><subject>Photometers</subject><subject>photomultiplication‐type</subject><subject>planar heterojunctions</subject><subject>Quantum efficiency</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMkdiTvHZTuyMVSEUqUCHIrEZx7EhVRoHJ1HVjUfgGXkSUgWVkelO-r_vTvoRugQ8AYzJtcrtZkIwIUCAJUdoBDHEIcVEHB92eDlFZ02zxhg4p2yEXtOibI3__vxKvTHBo_LebTNV5cHy3bVu05VtUZeFVm3hqp5a7WoTLEtVKR_MTW-6dVfpfRg8-TdVFXoQ8z7TrfPNOTqxqmzMxe8co-f0djWbh4unu_vZdBFqCjwJo0xlNhdUC8I4aG4sp0nOLWYJJRiizOKIW8sTRgXDjOHMigRUnFMLBsecjtHVcLf27qMzTSvXrvNV_1ISzoUQABH01GSgtHdN442VtS82yu8kYLlvUe5blIcWeyEZhG1Rmt0_tJzepA9_7g-oR3lp</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhao, Zijin</creator><creator>Xu, Chunyu</creator><creator>Ma, Yao</creator><creator>Ma, Xiaoling</creator><creator>Zhu, Xixiang</creator><creator>Niu, Lianbin</creator><creator>Shen, Liang</creator><creator>Zhou, Zhengji</creator><creator>Zhang, Fujun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2829-0735</orcidid></search><sort><creationdate>20230201</creationdate><title>Filter‐Free Narrowband Photomultiplication‐Type Planar Heterojunction Organic Photodetectors</title><author>Zhao, Zijin ; Xu, Chunyu ; Ma, Yao ; Ma, Xiaoling ; Zhu, Xixiang ; Niu, Lianbin ; Shen, Liang ; Zhou, Zhengji ; Zhang, Fujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-5babfd83c82471c7ef739d7f04932015bf057ff7943840440bf891a6d3f1e0673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bias</topic><topic>Electron traps</topic><topic>Heterojunctions</topic><topic>Materials science</topic><topic>Narrowband</topic><topic>organic photodetectors</topic><topic>Photometers</topic><topic>photomultiplication‐type</topic><topic>planar heterojunctions</topic><topic>Quantum efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zijin</creatorcontrib><creatorcontrib>Xu, Chunyu</creatorcontrib><creatorcontrib>Ma, Yao</creatorcontrib><creatorcontrib>Ma, Xiaoling</creatorcontrib><creatorcontrib>Zhu, Xixiang</creatorcontrib><creatorcontrib>Niu, Lianbin</creatorcontrib><creatorcontrib>Shen, Liang</creatorcontrib><creatorcontrib>Zhou, Zhengji</creatorcontrib><creatorcontrib>Zhang, Fujun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zijin</au><au>Xu, Chunyu</au><au>Ma, Yao</au><au>Ma, Xiaoling</au><au>Zhu, Xixiang</au><au>Niu, Lianbin</au><au>Shen, Liang</au><au>Zhou, Zhengji</au><au>Zhang, Fujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filter‐Free Narrowband Photomultiplication‐Type Planar Heterojunction Organic Photodetectors</atitle><jtitle>Advanced functional materials</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>33</volume><issue>9</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Filter‐free narrowband photomultiplication‐type planar heterojunction (PHJ) organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The thick front donor layer is employed as an optical field adjusting (OFA) layer. The sequentially coated PC71BM will diffuse slightly into OFA layer, which works as interfacial electron traps to capture photogenerated electrons for assisting hole tunneling injection. The P3HT/PC71BM‐based PM‐PHOPDs exhibit narrowband response with full‐width of half‐maximum of 32 nm and external quantum efficiency (EQE) of 1700% at 650 nm under −20 V bias. Due to the enhanced hole transport and reduced charge recombination in PHJ compared to those in bulk heterojunction (BHJ), the EQE of P3HT/PC71BM‐based narrowband PM‐PHOPDs is twice as P3HT:PC71BM BHJ‐based narrowband PM‐OPDs under the same bias. The response peak of PM‐PHOPDs is adjusted from 650 to 695 or 745 nm by incorporating SMPV1 or DRCN5T in OFA layers due to the red‐shifted absorption edge. The EQEs of 3600% at 695 nm and 870% at 745 nm are obtained for P3HT:SMPV1 and P3HT:DRCN5T‐based PM‐PHOPDs under −20 V bias, respectively. This work provides a smart strategy to achieve narrowband PM‐OPDs by designing different OFA layers. Filter‐free narrowband photomultiplication‐type planar heterojunction organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The narrowband response of PM‐PHOPDs shows tunable peak position from 650 to 695 or 745 nm by varying the donor layer from P3HT to P3HT:SMPV1 (3:1, w/w) or P3HT:DRCN5T (3:1, w/w).</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202212149</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2829-0735</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-02, Vol.33 (9), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2778881151
source Wiley Online Library Journals Frontfile Complete
subjects Bias
Electron traps
Heterojunctions
Materials science
Narrowband
organic photodetectors
Photometers
photomultiplication‐type
planar heterojunctions
Quantum efficiency
title Filter‐Free Narrowband Photomultiplication‐Type Planar Heterojunction Organic Photodetectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filter%E2%80%90Free%20Narrowband%20Photomultiplication%E2%80%90Type%20Planar%20Heterojunction%20Organic%20Photodetectors&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhao,%20Zijin&rft.date=2023-02-01&rft.volume=33&rft.issue=9&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202212149&rft_dat=%3Cproquest_cross%3E2778881151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778881151&rft_id=info:pmid/&rfr_iscdi=true