Filter‐Free Narrowband Photomultiplication‐Type Planar Heterojunction Organic Photodetectors
Filter‐free narrowband photomultiplication‐type planar heterojunction (PHJ) organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The thick front donor layer is employed as an optical field adjusting (OFA) layer. The sequentially...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-02, Vol.33 (9), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Zhao, Zijin Xu, Chunyu Ma, Yao Ma, Xiaoling Zhu, Xixiang Niu, Lianbin Shen, Liang Zhou, Zhengji Zhang, Fujun |
description | Filter‐free narrowband photomultiplication‐type planar heterojunction (PHJ) organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The thick front donor layer is employed as an optical field adjusting (OFA) layer. The sequentially coated PC71BM will diffuse slightly into OFA layer, which works as interfacial electron traps to capture photogenerated electrons for assisting hole tunneling injection. The P3HT/PC71BM‐based PM‐PHOPDs exhibit narrowband response with full‐width of half‐maximum of 32 nm and external quantum efficiency (EQE) of 1700% at 650 nm under −20 V bias. Due to the enhanced hole transport and reduced charge recombination in PHJ compared to those in bulk heterojunction (BHJ), the EQE of P3HT/PC71BM‐based narrowband PM‐PHOPDs is twice as P3HT:PC71BM BHJ‐based narrowband PM‐OPDs under the same bias. The response peak of PM‐PHOPDs is adjusted from 650 to 695 or 745 nm by incorporating SMPV1 or DRCN5T in OFA layers due to the red‐shifted absorption edge. The EQEs of 3600% at 695 nm and 870% at 745 nm are obtained for P3HT:SMPV1 and P3HT:DRCN5T‐based PM‐PHOPDs under −20 V bias, respectively. This work provides a smart strategy to achieve narrowband PM‐OPDs by designing different OFA layers.
Filter‐free narrowband photomultiplication‐type planar heterojunction organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The narrowband response of PM‐PHOPDs shows tunable peak position from 650 to 695 or 745 nm by varying the donor layer from P3HT to P3HT:SMPV1 (3:1, w/w) or P3HT:DRCN5T (3:1, w/w). |
doi_str_mv | 10.1002/adfm.202212149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2778881151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778881151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-5babfd83c82471c7ef739d7f04932015bf057ff7943840440bf891a6d3f1e0673</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMkdiTvHZTuyMVSEUqUCHIrEZx7EhVRoHJ1HVjUfgGXkSUgWVkelO-r_vTvoRugQ8AYzJtcrtZkIwIUCAJUdoBDHEIcVEHB92eDlFZ02zxhg4p2yEXtOibI3__vxKvTHBo_LebTNV5cHy3bVu05VtUZeFVm3hqp5a7WoTLEtVKR_MTW-6dVfpfRg8-TdVFXoQ8z7TrfPNOTqxqmzMxe8co-f0djWbh4unu_vZdBFqCjwJo0xlNhdUC8I4aG4sp0nOLWYJJRiizOKIW8sTRgXDjOHMigRUnFMLBsecjtHVcLf27qMzTSvXrvNV_1ISzoUQABH01GSgtHdN442VtS82yu8kYLlvUe5blIcWeyEZhG1Rmt0_tJzepA9_7g-oR3lp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778881151</pqid></control><display><type>article</type><title>Filter‐Free Narrowband Photomultiplication‐Type Planar Heterojunction Organic Photodetectors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Zijin ; Xu, Chunyu ; Ma, Yao ; Ma, Xiaoling ; Zhu, Xixiang ; Niu, Lianbin ; Shen, Liang ; Zhou, Zhengji ; Zhang, Fujun</creator><creatorcontrib>Zhao, Zijin ; Xu, Chunyu ; Ma, Yao ; Ma, Xiaoling ; Zhu, Xixiang ; Niu, Lianbin ; Shen, Liang ; Zhou, Zhengji ; Zhang, Fujun</creatorcontrib><description>Filter‐free narrowband photomultiplication‐type planar heterojunction (PHJ) organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The thick front donor layer is employed as an optical field adjusting (OFA) layer. The sequentially coated PC71BM will diffuse slightly into OFA layer, which works as interfacial electron traps to capture photogenerated electrons for assisting hole tunneling injection. The P3HT/PC71BM‐based PM‐PHOPDs exhibit narrowband response with full‐width of half‐maximum of 32 nm and external quantum efficiency (EQE) of 1700% at 650 nm under −20 V bias. Due to the enhanced hole transport and reduced charge recombination in PHJ compared to those in bulk heterojunction (BHJ), the EQE of P3HT/PC71BM‐based narrowband PM‐PHOPDs is twice as P3HT:PC71BM BHJ‐based narrowband PM‐OPDs under the same bias. The response peak of PM‐PHOPDs is adjusted from 650 to 695 or 745 nm by incorporating SMPV1 or DRCN5T in OFA layers due to the red‐shifted absorption edge. The EQEs of 3600% at 695 nm and 870% at 745 nm are obtained for P3HT:SMPV1 and P3HT:DRCN5T‐based PM‐PHOPDs under −20 V bias, respectively. This work provides a smart strategy to achieve narrowband PM‐OPDs by designing different OFA layers.
Filter‐free narrowband photomultiplication‐type planar heterojunction organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The narrowband response of PM‐PHOPDs shows tunable peak position from 650 to 695 or 745 nm by varying the donor layer from P3HT to P3HT:SMPV1 (3:1, w/w) or P3HT:DRCN5T (3:1, w/w).</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202212149</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bias ; Electron traps ; Heterojunctions ; Materials science ; Narrowband ; organic photodetectors ; Photometers ; photomultiplication‐type ; planar heterojunctions ; Quantum efficiency</subject><ispartof>Advanced functional materials, 2023-02, Vol.33 (9), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-5babfd83c82471c7ef739d7f04932015bf057ff7943840440bf891a6d3f1e0673</citedby><cites>FETCH-LOGICAL-c3179-5babfd83c82471c7ef739d7f04932015bf057ff7943840440bf891a6d3f1e0673</cites><orcidid>0000-0003-2829-0735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202212149$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202212149$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhao, Zijin</creatorcontrib><creatorcontrib>Xu, Chunyu</creatorcontrib><creatorcontrib>Ma, Yao</creatorcontrib><creatorcontrib>Ma, Xiaoling</creatorcontrib><creatorcontrib>Zhu, Xixiang</creatorcontrib><creatorcontrib>Niu, Lianbin</creatorcontrib><creatorcontrib>Shen, Liang</creatorcontrib><creatorcontrib>Zhou, Zhengji</creatorcontrib><creatorcontrib>Zhang, Fujun</creatorcontrib><title>Filter‐Free Narrowband Photomultiplication‐Type Planar Heterojunction Organic Photodetectors</title><title>Advanced functional materials</title><description>Filter‐free narrowband photomultiplication‐type planar heterojunction (PHJ) organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The thick front donor layer is employed as an optical field adjusting (OFA) layer. The sequentially coated PC71BM will diffuse slightly into OFA layer, which works as interfacial electron traps to capture photogenerated electrons for assisting hole tunneling injection. The P3HT/PC71BM‐based PM‐PHOPDs exhibit narrowband response with full‐width of half‐maximum of 32 nm and external quantum efficiency (EQE) of 1700% at 650 nm under −20 V bias. Due to the enhanced hole transport and reduced charge recombination in PHJ compared to those in bulk heterojunction (BHJ), the EQE of P3HT/PC71BM‐based narrowband PM‐PHOPDs is twice as P3HT:PC71BM BHJ‐based narrowband PM‐OPDs under the same bias. The response peak of PM‐PHOPDs is adjusted from 650 to 695 or 745 nm by incorporating SMPV1 or DRCN5T in OFA layers due to the red‐shifted absorption edge. The EQEs of 3600% at 695 nm and 870% at 745 nm are obtained for P3HT:SMPV1 and P3HT:DRCN5T‐based PM‐PHOPDs under −20 V bias, respectively. This work provides a smart strategy to achieve narrowband PM‐OPDs by designing different OFA layers.
Filter‐free narrowband photomultiplication‐type planar heterojunction organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The narrowband response of PM‐PHOPDs shows tunable peak position from 650 to 695 or 745 nm by varying the donor layer from P3HT to P3HT:SMPV1 (3:1, w/w) or P3HT:DRCN5T (3:1, w/w).</description><subject>Bias</subject><subject>Electron traps</subject><subject>Heterojunctions</subject><subject>Materials science</subject><subject>Narrowband</subject><subject>organic photodetectors</subject><subject>Photometers</subject><subject>photomultiplication‐type</subject><subject>planar heterojunctions</subject><subject>Quantum efficiency</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMkdiTvHZTuyMVSEUqUCHIrEZx7EhVRoHJ1HVjUfgGXkSUgWVkelO-r_vTvoRugQ8AYzJtcrtZkIwIUCAJUdoBDHEIcVEHB92eDlFZ02zxhg4p2yEXtOibI3__vxKvTHBo_LebTNV5cHy3bVu05VtUZeFVm3hqp5a7WoTLEtVKR_MTW-6dVfpfRg8-TdVFXoQ8z7TrfPNOTqxqmzMxe8co-f0djWbh4unu_vZdBFqCjwJo0xlNhdUC8I4aG4sp0nOLWYJJRiizOKIW8sTRgXDjOHMigRUnFMLBsecjtHVcLf27qMzTSvXrvNV_1ISzoUQABH01GSgtHdN442VtS82yu8kYLlvUe5blIcWeyEZhG1Rmt0_tJzepA9_7g-oR3lp</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhao, Zijin</creator><creator>Xu, Chunyu</creator><creator>Ma, Yao</creator><creator>Ma, Xiaoling</creator><creator>Zhu, Xixiang</creator><creator>Niu, Lianbin</creator><creator>Shen, Liang</creator><creator>Zhou, Zhengji</creator><creator>Zhang, Fujun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2829-0735</orcidid></search><sort><creationdate>20230201</creationdate><title>Filter‐Free Narrowband Photomultiplication‐Type Planar Heterojunction Organic Photodetectors</title><author>Zhao, Zijin ; Xu, Chunyu ; Ma, Yao ; Ma, Xiaoling ; Zhu, Xixiang ; Niu, Lianbin ; Shen, Liang ; Zhou, Zhengji ; Zhang, Fujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-5babfd83c82471c7ef739d7f04932015bf057ff7943840440bf891a6d3f1e0673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bias</topic><topic>Electron traps</topic><topic>Heterojunctions</topic><topic>Materials science</topic><topic>Narrowband</topic><topic>organic photodetectors</topic><topic>Photometers</topic><topic>photomultiplication‐type</topic><topic>planar heterojunctions</topic><topic>Quantum efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zijin</creatorcontrib><creatorcontrib>Xu, Chunyu</creatorcontrib><creatorcontrib>Ma, Yao</creatorcontrib><creatorcontrib>Ma, Xiaoling</creatorcontrib><creatorcontrib>Zhu, Xixiang</creatorcontrib><creatorcontrib>Niu, Lianbin</creatorcontrib><creatorcontrib>Shen, Liang</creatorcontrib><creatorcontrib>Zhou, Zhengji</creatorcontrib><creatorcontrib>Zhang, Fujun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zijin</au><au>Xu, Chunyu</au><au>Ma, Yao</au><au>Ma, Xiaoling</au><au>Zhu, Xixiang</au><au>Niu, Lianbin</au><au>Shen, Liang</au><au>Zhou, Zhengji</au><au>Zhang, Fujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filter‐Free Narrowband Photomultiplication‐Type Planar Heterojunction Organic Photodetectors</atitle><jtitle>Advanced functional materials</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>33</volume><issue>9</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Filter‐free narrowband photomultiplication‐type planar heterojunction (PHJ) organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The thick front donor layer is employed as an optical field adjusting (OFA) layer. The sequentially coated PC71BM will diffuse slightly into OFA layer, which works as interfacial electron traps to capture photogenerated electrons for assisting hole tunneling injection. The P3HT/PC71BM‐based PM‐PHOPDs exhibit narrowband response with full‐width of half‐maximum of 32 nm and external quantum efficiency (EQE) of 1700% at 650 nm under −20 V bias. Due to the enhanced hole transport and reduced charge recombination in PHJ compared to those in bulk heterojunction (BHJ), the EQE of P3HT/PC71BM‐based narrowband PM‐PHOPDs is twice as P3HT:PC71BM BHJ‐based narrowband PM‐OPDs under the same bias. The response peak of PM‐PHOPDs is adjusted from 650 to 695 or 745 nm by incorporating SMPV1 or DRCN5T in OFA layers due to the red‐shifted absorption edge. The EQEs of 3600% at 695 nm and 870% at 745 nm are obtained for P3HT:SMPV1 and P3HT:DRCN5T‐based PM‐PHOPDs under −20 V bias, respectively. This work provides a smart strategy to achieve narrowband PM‐OPDs by designing different OFA layers.
Filter‐free narrowband photomultiplication‐type planar heterojunction organic photodetectors (PM‐PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The narrowband response of PM‐PHOPDs shows tunable peak position from 650 to 695 or 745 nm by varying the donor layer from P3HT to P3HT:SMPV1 (3:1, w/w) or P3HT:DRCN5T (3:1, w/w).</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202212149</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2829-0735</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-02, Vol.33 (9), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2778881151 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bias Electron traps Heterojunctions Materials science Narrowband organic photodetectors Photometers photomultiplication‐type planar heterojunctions Quantum efficiency |
title | Filter‐Free Narrowband Photomultiplication‐Type Planar Heterojunction Organic Photodetectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filter%E2%80%90Free%20Narrowband%20Photomultiplication%E2%80%90Type%20Planar%20Heterojunction%20Organic%20Photodetectors&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhao,%20Zijin&rft.date=2023-02-01&rft.volume=33&rft.issue=9&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202212149&rft_dat=%3Cproquest_cross%3E2778881151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778881151&rft_id=info:pmid/&rfr_iscdi=true |