UAV Path Planning Employing MPC- Reinforcement Learning Method Considering Collision Avoidance

In this paper, we tackle the problem of Unmanned Aerial (UA V) path planning in complex and uncertain environments by designing a Model Predictive Control (MPC), based on a Long-Short-Term Memory (LSTM) network integrated into the Deep Deterministic Policy Gradient algorithm. In the proposed solutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Ramezani, Mahya, Habibi, Hamed, Sanchez Lopez, Jose luis, Voos, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ramezani, Mahya
Habibi, Hamed
Sanchez Lopez, Jose luis
Voos, Holger
description In this paper, we tackle the problem of Unmanned Aerial (UA V) path planning in complex and uncertain environments by designing a Model Predictive Control (MPC), based on a Long-Short-Term Memory (LSTM) network integrated into the Deep Deterministic Policy Gradient algorithm. In the proposed solution, LSTM-MPC operates as a deterministic policy within the DDPG network, and it leverages a predicting pool to store predicted future states and actions for improved robustness and efficiency. The use of the predicting pool also enables the initialization of the critic network, leading to improved convergence speed and reduced failure rate compared to traditional reinforcement learning and deep reinforcement learning methods. The effectiveness of the proposed solution is evaluated by numerical simulations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2778778402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778778402</sourcerecordid><originalsourceid>FETCH-proquest_journals_27787784023</originalsourceid><addsrcrecordid>eNqNissKwjAURIMgWNR_CLguxERtt6VUXCgUUZdKaG9tSnpvTarg3_vADxAGZjhzBiyQSs3DeCHliE29b4QQchXJ5VIF7HxMTjzXfc1zqxENXnnWdpaen7XL05DvwWBFroAWsOdb0O5r7aCvqeQpoTcluA9KyVrjDSFPHmRKjQVM2LDS1sP012M2W2eHdBN2jm538P2lobvD93WRURS_sxBS_We9ANGrQ4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778778402</pqid></control><display><type>article</type><title>UAV Path Planning Employing MPC- Reinforcement Learning Method Considering Collision Avoidance</title><source>Free E- Journals</source><creator>Ramezani, Mahya ; Habibi, Hamed ; Sanchez Lopez, Jose luis ; Voos, Holger</creator><creatorcontrib>Ramezani, Mahya ; Habibi, Hamed ; Sanchez Lopez, Jose luis ; Voos, Holger</creatorcontrib><description>In this paper, we tackle the problem of Unmanned Aerial (UA V) path planning in complex and uncertain environments by designing a Model Predictive Control (MPC), based on a Long-Short-Term Memory (LSTM) network integrated into the Deep Deterministic Policy Gradient algorithm. In the proposed solution, LSTM-MPC operates as a deterministic policy within the DDPG network, and it leverages a predicting pool to store predicted future states and actions for improved robustness and efficiency. The use of the predicting pool also enables the initialization of the critic network, leading to improved convergence speed and reduced failure rate compared to traditional reinforcement learning and deep reinforcement learning methods. The effectiveness of the proposed solution is evaluated by numerical simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Deep learning ; Failure rates ; Machine learning ; Mathematical models ; Path planning ; Predictive control ; Robustness (mathematics) ; Search and rescue missions ; Unmanned aerial vehicles</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ramezani, Mahya</creatorcontrib><creatorcontrib>Habibi, Hamed</creatorcontrib><creatorcontrib>Sanchez Lopez, Jose luis</creatorcontrib><creatorcontrib>Voos, Holger</creatorcontrib><title>UAV Path Planning Employing MPC- Reinforcement Learning Method Considering Collision Avoidance</title><title>arXiv.org</title><description>In this paper, we tackle the problem of Unmanned Aerial (UA V) path planning in complex and uncertain environments by designing a Model Predictive Control (MPC), based on a Long-Short-Term Memory (LSTM) network integrated into the Deep Deterministic Policy Gradient algorithm. In the proposed solution, LSTM-MPC operates as a deterministic policy within the DDPG network, and it leverages a predicting pool to store predicted future states and actions for improved robustness and efficiency. The use of the predicting pool also enables the initialization of the critic network, leading to improved convergence speed and reduced failure rate compared to traditional reinforcement learning and deep reinforcement learning methods. The effectiveness of the proposed solution is evaluated by numerical simulations.</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>Failure rates</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Path planning</subject><subject>Predictive control</subject><subject>Robustness (mathematics)</subject><subject>Search and rescue missions</subject><subject>Unmanned aerial vehicles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAURIMgWNR_CLguxERtt6VUXCgUUZdKaG9tSnpvTarg3_vADxAGZjhzBiyQSs3DeCHliE29b4QQchXJ5VIF7HxMTjzXfc1zqxENXnnWdpaen7XL05DvwWBFroAWsOdb0O5r7aCvqeQpoTcluA9KyVrjDSFPHmRKjQVM2LDS1sP012M2W2eHdBN2jm538P2lobvD93WRURS_sxBS_We9ANGrQ4k</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Ramezani, Mahya</creator><creator>Habibi, Hamed</creator><creator>Sanchez Lopez, Jose luis</creator><creator>Voos, Holger</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230307</creationdate><title>UAV Path Planning Employing MPC- Reinforcement Learning Method Considering Collision Avoidance</title><author>Ramezani, Mahya ; Habibi, Hamed ; Sanchez Lopez, Jose luis ; Voos, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27787784023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>Failure rates</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Path planning</topic><topic>Predictive control</topic><topic>Robustness (mathematics)</topic><topic>Search and rescue missions</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Ramezani, Mahya</creatorcontrib><creatorcontrib>Habibi, Hamed</creatorcontrib><creatorcontrib>Sanchez Lopez, Jose luis</creatorcontrib><creatorcontrib>Voos, Holger</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramezani, Mahya</au><au>Habibi, Hamed</au><au>Sanchez Lopez, Jose luis</au><au>Voos, Holger</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>UAV Path Planning Employing MPC- Reinforcement Learning Method Considering Collision Avoidance</atitle><jtitle>arXiv.org</jtitle><date>2023-03-07</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this paper, we tackle the problem of Unmanned Aerial (UA V) path planning in complex and uncertain environments by designing a Model Predictive Control (MPC), based on a Long-Short-Term Memory (LSTM) network integrated into the Deep Deterministic Policy Gradient algorithm. In the proposed solution, LSTM-MPC operates as a deterministic policy within the DDPG network, and it leverages a predicting pool to store predicted future states and actions for improved robustness and efficiency. The use of the predicting pool also enables the initialization of the critic network, leading to improved convergence speed and reduced failure rate compared to traditional reinforcement learning and deep reinforcement learning methods. The effectiveness of the proposed solution is evaluated by numerical simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2778778402
source Free E- Journals
subjects Algorithms
Deep learning
Failure rates
Machine learning
Mathematical models
Path planning
Predictive control
Robustness (mathematics)
Search and rescue missions
Unmanned aerial vehicles
title UAV Path Planning Employing MPC- Reinforcement Learning Method Considering Collision Avoidance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=UAV%20Path%20Planning%20Employing%20MPC-%20Reinforcement%20Learning%20Method%20Considering%20Collision%20Avoidance&rft.jtitle=arXiv.org&rft.au=Ramezani,%20Mahya&rft.date=2023-03-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2778778402%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778778402&rft_id=info:pmid/&rfr_iscdi=true