An optimal distributed RES sizing strategy in hybrid low voltage networks focused on EVs' integration

The new era of the energy sector has already begun, and therefore, new challenges need to be tackled. A major challenge that residential distribution grids are going to encounter with the integration of photovoltaic (PV) panels and electric vehicles (EVs) is the unsynchronized new demand and the tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Boglou, V., Karavas, C-S, Karlis, A., Arvanitis, K., Palaiologou, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Boglou, V.
Karavas, C-S
Karlis, A.
Arvanitis, K.
Palaiologou, I.
description The new era of the energy sector has already begun, and therefore, new challenges need to be tackled. A major challenge that residential distribution grids are going to encounter with the integration of photovoltaic (PV) panels and electric vehicles (EVs) is the unsynchronized new demand and the time-limited production of distributed generation, in combination with space limitations. Therefore, the necessity of energy storage systems (ESSs) is more than evident. ESSs have excessive manufacturing costs, implying that the purchase cost for residential users can be prohibitive. In the present work, a distributed optimal small-scale PV energy system sizing strategy is proposed, by considering the individual energy needs of each residence and their EVs. The strategy is formulated based on the demand of the households and EVs charging. By enabling the fuzzy cognitive maps theory, a graph is designed, aiming to establish the correlation among the individual energy parameters and the characteristics of the renewable energy sources (RES). The optimization results reveal that the adopted hybrid approach can reduce the energy cost significantly, up to almost 40%, while enabling distribution system operators (DSOs) to incorporate additional loads, without the need for network expansion. Finally, based on the extracted results, a short discussion about the concept of EVs' charging by residential RES is presented.
doi_str_mv 10.1109/ACCESS.2023.3245152
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2778700067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10044676</ieee_id><doaj_id>oai_doaj_org_article_693514cd5abf49888ed8b6435e68e2a5</doaj_id><sourcerecordid>2778700067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-99fa30392865c0ed6a26b3af9426d5370bb859067b3cd15093770c1a17e5533b3</originalsourceid><addsrcrecordid>eNpNkUtPGzEUhUeoSCDKL4CFpS5YJfgxfi2jKKVISJUa2q1lj-8Eh-k42A4o_PoaBlV4Y-vofOfaPk1zQfCcEKyvF8vlar2eU0zZnNGWE06PmlNKhJ4xzsSXT-eT5jznLa5LVYnL0wYWI4q7Ev7aAfmQSwpuX8CjX6s1yuE1jBtURVtgc0BhRA8Hl4JHQ3xBz3EodgNohPIS02NGfez2uaJxRKs_-araK1XREMevzXFvhwznH_tZ8_v76n75Y3b38-Z2ubibdS3WZaZ1bxlmmirBOwxeWCocs71uqfCcSeyc4hoL6VjnCceaSYk7YokEzhlz7Ky5nXJ9tFuzS_VZ6WCiDeZdiGljbCqhG8AIzThpO8-t61utlAKvnGgZB6GAWl6zvk1ZuxSf9pCL2cZ9Guv1DZVSyfqJQlYXm1xdijkn6P9PJdi81WOmesxbPeajnkpdTlQAgE8EblshBfsHONeK2g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778700067</pqid></control><display><type>article</type><title>An optimal distributed RES sizing strategy in hybrid low voltage networks focused on EVs' integration</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Boglou, V. ; Karavas, C-S ; Karlis, A. ; Arvanitis, K. ; Palaiologou, I.</creator><creatorcontrib>Boglou, V. ; Karavas, C-S ; Karlis, A. ; Arvanitis, K. ; Palaiologou, I.</creatorcontrib><description>The new era of the energy sector has already begun, and therefore, new challenges need to be tackled. A major challenge that residential distribution grids are going to encounter with the integration of photovoltaic (PV) panels and electric vehicles (EVs) is the unsynchronized new demand and the time-limited production of distributed generation, in combination with space limitations. Therefore, the necessity of energy storage systems (ESSs) is more than evident. ESSs have excessive manufacturing costs, implying that the purchase cost for residential users can be prohibitive. In the present work, a distributed optimal small-scale PV energy system sizing strategy is proposed, by considering the individual energy needs of each residence and their EVs. The strategy is formulated based on the demand of the households and EVs charging. By enabling the fuzzy cognitive maps theory, a graph is designed, aiming to establish the correlation among the individual energy parameters and the characteristics of the renewable energy sources (RES). The optimization results reveal that the adopted hybrid approach can reduce the energy cost significantly, up to almost 40%, while enabling distribution system operators (DSOs) to incorporate additional loads, without the need for network expansion. Finally, based on the extracted results, a short discussion about the concept of EVs' charging by residential RES is presented.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3245152</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Charging ; Cognitive maps ; Costs ; Distributed Energy Networks ; Distributed generation ; Electric vehicles ; Energy costs ; Energy industry ; Energy storage ; EVs ; Fuzzy Cognitive Maps ; Households ; Hybrid Energy Systems ; Low voltage ; Optimization ; Photovoltaic cells ; Power quality ; Power system stability ; Production ; Production costs ; Renewable energy sources ; RES sizing ; Sizing ; Stability analysis ; Storage systems</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-99fa30392865c0ed6a26b3af9426d5370bb859067b3cd15093770c1a17e5533b3</citedby><cites>FETCH-LOGICAL-c409t-99fa30392865c0ed6a26b3af9426d5370bb859067b3cd15093770c1a17e5533b3</cites><orcidid>0000-0002-8084-7919 ; 0000-0003-0666-0109 ; 0000-0002-5630-6143 ; 0000-0002-8191-1556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10044676$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Boglou, V.</creatorcontrib><creatorcontrib>Karavas, C-S</creatorcontrib><creatorcontrib>Karlis, A.</creatorcontrib><creatorcontrib>Arvanitis, K.</creatorcontrib><creatorcontrib>Palaiologou, I.</creatorcontrib><title>An optimal distributed RES sizing strategy in hybrid low voltage networks focused on EVs' integration</title><title>IEEE access</title><addtitle>Access</addtitle><description>The new era of the energy sector has already begun, and therefore, new challenges need to be tackled. A major challenge that residential distribution grids are going to encounter with the integration of photovoltaic (PV) panels and electric vehicles (EVs) is the unsynchronized new demand and the time-limited production of distributed generation, in combination with space limitations. Therefore, the necessity of energy storage systems (ESSs) is more than evident. ESSs have excessive manufacturing costs, implying that the purchase cost for residential users can be prohibitive. In the present work, a distributed optimal small-scale PV energy system sizing strategy is proposed, by considering the individual energy needs of each residence and their EVs. The strategy is formulated based on the demand of the households and EVs charging. By enabling the fuzzy cognitive maps theory, a graph is designed, aiming to establish the correlation among the individual energy parameters and the characteristics of the renewable energy sources (RES). The optimization results reveal that the adopted hybrid approach can reduce the energy cost significantly, up to almost 40%, while enabling distribution system operators (DSOs) to incorporate additional loads, without the need for network expansion. Finally, based on the extracted results, a short discussion about the concept of EVs' charging by residential RES is presented.</description><subject>Charging</subject><subject>Cognitive maps</subject><subject>Costs</subject><subject>Distributed Energy Networks</subject><subject>Distributed generation</subject><subject>Electric vehicles</subject><subject>Energy costs</subject><subject>Energy industry</subject><subject>Energy storage</subject><subject>EVs</subject><subject>Fuzzy Cognitive Maps</subject><subject>Households</subject><subject>Hybrid Energy Systems</subject><subject>Low voltage</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Power quality</subject><subject>Power system stability</subject><subject>Production</subject><subject>Production costs</subject><subject>Renewable energy sources</subject><subject>RES sizing</subject><subject>Sizing</subject><subject>Stability analysis</subject><subject>Storage systems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtPGzEUhUeoSCDKL4CFpS5YJfgxfi2jKKVISJUa2q1lj-8Eh-k42A4o_PoaBlV4Y-vofOfaPk1zQfCcEKyvF8vlar2eU0zZnNGWE06PmlNKhJ4xzsSXT-eT5jznLa5LVYnL0wYWI4q7Ev7aAfmQSwpuX8CjX6s1yuE1jBtURVtgc0BhRA8Hl4JHQ3xBz3EodgNohPIS02NGfez2uaJxRKs_-araK1XREMevzXFvhwznH_tZ8_v76n75Y3b38-Z2ubibdS3WZaZ1bxlmmirBOwxeWCocs71uqfCcSeyc4hoL6VjnCceaSYk7YokEzhlz7Ky5nXJ9tFuzS_VZ6WCiDeZdiGljbCqhG8AIzThpO8-t61utlAKvnGgZB6GAWl6zvk1ZuxSf9pCL2cZ9Guv1DZVSyfqJQlYXm1xdijkn6P9PJdi81WOmesxbPeajnkpdTlQAgE8EblshBfsHONeK2g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Boglou, V.</creator><creator>Karavas, C-S</creator><creator>Karlis, A.</creator><creator>Arvanitis, K.</creator><creator>Palaiologou, I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8084-7919</orcidid><orcidid>https://orcid.org/0000-0003-0666-0109</orcidid><orcidid>https://orcid.org/0000-0002-5630-6143</orcidid><orcidid>https://orcid.org/0000-0002-8191-1556</orcidid></search><sort><creationdate>20230101</creationdate><title>An optimal distributed RES sizing strategy in hybrid low voltage networks focused on EVs' integration</title><author>Boglou, V. ; Karavas, C-S ; Karlis, A. ; Arvanitis, K. ; Palaiologou, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-99fa30392865c0ed6a26b3af9426d5370bb859067b3cd15093770c1a17e5533b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charging</topic><topic>Cognitive maps</topic><topic>Costs</topic><topic>Distributed Energy Networks</topic><topic>Distributed generation</topic><topic>Electric vehicles</topic><topic>Energy costs</topic><topic>Energy industry</topic><topic>Energy storage</topic><topic>EVs</topic><topic>Fuzzy Cognitive Maps</topic><topic>Households</topic><topic>Hybrid Energy Systems</topic><topic>Low voltage</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Power quality</topic><topic>Power system stability</topic><topic>Production</topic><topic>Production costs</topic><topic>Renewable energy sources</topic><topic>RES sizing</topic><topic>Sizing</topic><topic>Stability analysis</topic><topic>Storage systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boglou, V.</creatorcontrib><creatorcontrib>Karavas, C-S</creatorcontrib><creatorcontrib>Karlis, A.</creatorcontrib><creatorcontrib>Arvanitis, K.</creatorcontrib><creatorcontrib>Palaiologou, I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boglou, V.</au><au>Karavas, C-S</au><au>Karlis, A.</au><au>Arvanitis, K.</au><au>Palaiologou, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimal distributed RES sizing strategy in hybrid low voltage networks focused on EVs' integration</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The new era of the energy sector has already begun, and therefore, new challenges need to be tackled. A major challenge that residential distribution grids are going to encounter with the integration of photovoltaic (PV) panels and electric vehicles (EVs) is the unsynchronized new demand and the time-limited production of distributed generation, in combination with space limitations. Therefore, the necessity of energy storage systems (ESSs) is more than evident. ESSs have excessive manufacturing costs, implying that the purchase cost for residential users can be prohibitive. In the present work, a distributed optimal small-scale PV energy system sizing strategy is proposed, by considering the individual energy needs of each residence and their EVs. The strategy is formulated based on the demand of the households and EVs charging. By enabling the fuzzy cognitive maps theory, a graph is designed, aiming to establish the correlation among the individual energy parameters and the characteristics of the renewable energy sources (RES). The optimization results reveal that the adopted hybrid approach can reduce the energy cost significantly, up to almost 40%, while enabling distribution system operators (DSOs) to incorporate additional loads, without the need for network expansion. Finally, based on the extracted results, a short discussion about the concept of EVs' charging by residential RES is presented.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3245152</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8084-7919</orcidid><orcidid>https://orcid.org/0000-0003-0666-0109</orcidid><orcidid>https://orcid.org/0000-0002-5630-6143</orcidid><orcidid>https://orcid.org/0000-0002-8191-1556</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2778700067
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Charging
Cognitive maps
Costs
Distributed Energy Networks
Distributed generation
Electric vehicles
Energy costs
Energy industry
Energy storage
EVs
Fuzzy Cognitive Maps
Households
Hybrid Energy Systems
Low voltage
Optimization
Photovoltaic cells
Power quality
Power system stability
Production
Production costs
Renewable energy sources
RES sizing
Sizing
Stability analysis
Storage systems
title An optimal distributed RES sizing strategy in hybrid low voltage networks focused on EVs' integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimal%20distributed%20RES%20sizing%20strategy%20in%20hybrid%20low%20voltage%20networks%20focused%20on%20EVs'%20integration&rft.jtitle=IEEE%20access&rft.au=Boglou,%20V.&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3245152&rft_dat=%3Cproquest_doaj_%3E2778700067%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778700067&rft_id=info:pmid/&rft_ieee_id=10044676&rft_doaj_id=oai_doaj_org_article_693514cd5abf49888ed8b6435e68e2a5&rfr_iscdi=true