Supermagnetic α-cellulosic nano-scaffolds for human adipose-derived stem cells osteoconduction enhancement

This study fabricated a nano-biomaterial of supermagnetized α-cellulose (αCS@Fe 3 O 4 ) for enhanced osteoconduction of hADSCs (human adipose-derived stem cells). First, the reduction precipitation method was successfully employed to synthesize αCS@Fe 3 O 4 . The synthesized material αCS@Fe 3 O 4 wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2023-03, Vol.30 (4), p.2385-2398
Hauptverfasser: Lee, Seung-Cheol, Lee, Seung-Ho, Kang, Da-Hyun, Kim, Min, Sung, Jung-Suk, Kadam, Avinash A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2398
container_issue 4
container_start_page 2385
container_title Cellulose (London)
container_volume 30
creator Lee, Seung-Cheol
Lee, Seung-Ho
Kang, Da-Hyun
Kim, Min
Sung, Jung-Suk
Kadam, Avinash A.
description This study fabricated a nano-biomaterial of supermagnetized α-cellulose (αCS@Fe 3 O 4 ) for enhanced osteoconduction of hADSCs (human adipose-derived stem cells). First, the reduction precipitation method was successfully employed to synthesize αCS@Fe 3 O 4 . The synthesized material αCS@Fe 3 O 4 was structurally and morphologically characterized by SEM, TEM, XRD, TGA, and XPS analyses. The characterizations confirmed a nanostructural modification of αCS using Fe 3 O 4 nanoparticles. Next, the fabricated material αCS@Fe 3 O 4 was assessed for biocompatibility. The obtained data confirmed the biocompatible nature of the αCS@Fe 3 O 4 . Then, the αCS@Fe 3 O 4 was applied for the osteoconductive differentiation of the hADSCs. The hADSCs osteoconduction was enhanced significantly (11.325 fold increase) in the presence of the αCS@Fe 3 O 4 compared to the control hADSCs. The Alizarin Red S (ARS) staining microscopic images corroborated the osteoconduction enhancement. Furthermore, the relative gene expression of the important osteogenic markers ALP, OCN, and RUNX2 was analyzed. The expression levels were significantly enhanced in the presence of the target material αCS@Fe 3 O 4 . Finally, the immunofluorescent staining of ALP, OCN, and RUNX2 corroborated the enhanced osteoconduction. Thus, in conclusion, αCS@Fe 3 O 4 is a low-cost, economical, biocompatible nano-biomaterial with significant osteoconduction enhancement potential that can be applied in bone defect treatments in the future.
doi_str_mv 10.1007/s10570-023-05045-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2778478404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778478404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c18e640b8114f4822568a00b5c748feec72759352d9fb9d4676d73e3be2aac673</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxoMouK6-gKeC5-gkTZr2KIv_QPCggreQptPdrm1Sk1bwsXwRn8nWFbwJAzPDfN838CPklME5A1AXkYFUQIGnFCQISdUeWTCpOM1z_rJPFlBkxXwuDslRjFsAKBRnC_L6OPYYOrN2ODQ2-fqkFtt2bH2cNmecp9GauvZtFZPah2QzdsYlpmp6H5FWGJp3rJI4YJfMxpj4afbWu2q0Q-Ndgm5jnMUO3XBMDmrTRjz57UvyfH31tLql9w83d6vLe2q5goFalmMmoMwZE7XIOZdZbgBKaZXIa0SruJJFKnlV1GVRiUxllUoxLZEbYzOVLsnZLrcP_m3EOOitH4ObXmquVC6mAjGp-E5lg48xYK370HQmfGgGeoaqd1D1RE3_QNVzdLozxUns1hj-ov9xfQMys3zG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778478404</pqid></control><display><type>article</type><title>Supermagnetic α-cellulosic nano-scaffolds for human adipose-derived stem cells osteoconduction enhancement</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Seung-Cheol ; Lee, Seung-Ho ; Kang, Da-Hyun ; Kim, Min ; Sung, Jung-Suk ; Kadam, Avinash A.</creator><creatorcontrib>Lee, Seung-Cheol ; Lee, Seung-Ho ; Kang, Da-Hyun ; Kim, Min ; Sung, Jung-Suk ; Kadam, Avinash A.</creatorcontrib><description>This study fabricated a nano-biomaterial of supermagnetized α-cellulose (αCS@Fe 3 O 4 ) for enhanced osteoconduction of hADSCs (human adipose-derived stem cells). First, the reduction precipitation method was successfully employed to synthesize αCS@Fe 3 O 4 . The synthesized material αCS@Fe 3 O 4 was structurally and morphologically characterized by SEM, TEM, XRD, TGA, and XPS analyses. The characterizations confirmed a nanostructural modification of αCS using Fe 3 O 4 nanoparticles. Next, the fabricated material αCS@Fe 3 O 4 was assessed for biocompatibility. The obtained data confirmed the biocompatible nature of the αCS@Fe 3 O 4 . Then, the αCS@Fe 3 O 4 was applied for the osteoconductive differentiation of the hADSCs. The hADSCs osteoconduction was enhanced significantly (11.325 fold increase) in the presence of the αCS@Fe 3 O 4 compared to the control hADSCs. The Alizarin Red S (ARS) staining microscopic images corroborated the osteoconduction enhancement. Furthermore, the relative gene expression of the important osteogenic markers ALP, OCN, and RUNX2 was analyzed. The expression levels were significantly enhanced in the presence of the target material αCS@Fe 3 O 4 . Finally, the immunofluorescent staining of ALP, OCN, and RUNX2 corroborated the enhanced osteoconduction. Thus, in conclusion, αCS@Fe 3 O 4 is a low-cost, economical, biocompatible nano-biomaterial with significant osteoconduction enhancement potential that can be applied in bone defect treatments in the future.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-023-05045-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alizarin ; Biocompatibility ; Biomedical materials ; Bioorganic Chemistry ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Gene expression ; Glass ; Image enhancement ; Iron oxides ; Nanomaterials ; Nanoparticles ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Staining ; Stem cells ; Sustainable Development ; Synthesis ; X ray photoelectron spectroscopy</subject><ispartof>Cellulose (London), 2023-03, Vol.30 (4), p.2385-2398</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c18e640b8114f4822568a00b5c748feec72759352d9fb9d4676d73e3be2aac673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-023-05045-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-023-05045-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lee, Seung-Cheol</creatorcontrib><creatorcontrib>Lee, Seung-Ho</creatorcontrib><creatorcontrib>Kang, Da-Hyun</creatorcontrib><creatorcontrib>Kim, Min</creatorcontrib><creatorcontrib>Sung, Jung-Suk</creatorcontrib><creatorcontrib>Kadam, Avinash A.</creatorcontrib><title>Supermagnetic α-cellulosic nano-scaffolds for human adipose-derived stem cells osteoconduction enhancement</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>This study fabricated a nano-biomaterial of supermagnetized α-cellulose (αCS@Fe 3 O 4 ) for enhanced osteoconduction of hADSCs (human adipose-derived stem cells). First, the reduction precipitation method was successfully employed to synthesize αCS@Fe 3 O 4 . The synthesized material αCS@Fe 3 O 4 was structurally and morphologically characterized by SEM, TEM, XRD, TGA, and XPS analyses. The characterizations confirmed a nanostructural modification of αCS using Fe 3 O 4 nanoparticles. Next, the fabricated material αCS@Fe 3 O 4 was assessed for biocompatibility. The obtained data confirmed the biocompatible nature of the αCS@Fe 3 O 4 . Then, the αCS@Fe 3 O 4 was applied for the osteoconductive differentiation of the hADSCs. The hADSCs osteoconduction was enhanced significantly (11.325 fold increase) in the presence of the αCS@Fe 3 O 4 compared to the control hADSCs. The Alizarin Red S (ARS) staining microscopic images corroborated the osteoconduction enhancement. Furthermore, the relative gene expression of the important osteogenic markers ALP, OCN, and RUNX2 was analyzed. The expression levels were significantly enhanced in the presence of the target material αCS@Fe 3 O 4 . Finally, the immunofluorescent staining of ALP, OCN, and RUNX2 corroborated the enhanced osteoconduction. Thus, in conclusion, αCS@Fe 3 O 4 is a low-cost, economical, biocompatible nano-biomaterial with significant osteoconduction enhancement potential that can be applied in bone defect treatments in the future.</description><subject>Alizarin</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bioorganic Chemistry</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Gene expression</subject><subject>Glass</subject><subject>Image enhancement</subject><subject>Iron oxides</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Staining</subject><subject>Stem cells</subject><subject>Sustainable Development</subject><subject>Synthesis</subject><subject>X ray photoelectron spectroscopy</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM9KxDAQxoMouK6-gKeC5-gkTZr2KIv_QPCggreQptPdrm1Sk1bwsXwRn8nWFbwJAzPDfN838CPklME5A1AXkYFUQIGnFCQISdUeWTCpOM1z_rJPFlBkxXwuDslRjFsAKBRnC_L6OPYYOrN2ODQ2-fqkFtt2bH2cNmecp9GauvZtFZPah2QzdsYlpmp6H5FWGJp3rJI4YJfMxpj4afbWu2q0Q-Ndgm5jnMUO3XBMDmrTRjz57UvyfH31tLql9w83d6vLe2q5goFalmMmoMwZE7XIOZdZbgBKaZXIa0SruJJFKnlV1GVRiUxllUoxLZEbYzOVLsnZLrcP_m3EOOitH4ObXmquVC6mAjGp-E5lg48xYK370HQmfGgGeoaqd1D1RE3_QNVzdLozxUns1hj-ov9xfQMys3zG</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Lee, Seung-Cheol</creator><creator>Lee, Seung-Ho</creator><creator>Kang, Da-Hyun</creator><creator>Kim, Min</creator><creator>Sung, Jung-Suk</creator><creator>Kadam, Avinash A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230301</creationdate><title>Supermagnetic α-cellulosic nano-scaffolds for human adipose-derived stem cells osteoconduction enhancement</title><author>Lee, Seung-Cheol ; Lee, Seung-Ho ; Kang, Da-Hyun ; Kim, Min ; Sung, Jung-Suk ; Kadam, Avinash A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c18e640b8114f4822568a00b5c748feec72759352d9fb9d4676d73e3be2aac673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alizarin</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bioorganic Chemistry</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Gene expression</topic><topic>Glass</topic><topic>Image enhancement</topic><topic>Iron oxides</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Staining</topic><topic>Stem cells</topic><topic>Sustainable Development</topic><topic>Synthesis</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seung-Cheol</creatorcontrib><creatorcontrib>Lee, Seung-Ho</creatorcontrib><creatorcontrib>Kang, Da-Hyun</creatorcontrib><creatorcontrib>Kim, Min</creatorcontrib><creatorcontrib>Sung, Jung-Suk</creatorcontrib><creatorcontrib>Kadam, Avinash A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seung-Cheol</au><au>Lee, Seung-Ho</au><au>Kang, Da-Hyun</au><au>Kim, Min</au><au>Sung, Jung-Suk</au><au>Kadam, Avinash A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supermagnetic α-cellulosic nano-scaffolds for human adipose-derived stem cells osteoconduction enhancement</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>30</volume><issue>4</issue><spage>2385</spage><epage>2398</epage><pages>2385-2398</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>This study fabricated a nano-biomaterial of supermagnetized α-cellulose (αCS@Fe 3 O 4 ) for enhanced osteoconduction of hADSCs (human adipose-derived stem cells). First, the reduction precipitation method was successfully employed to synthesize αCS@Fe 3 O 4 . The synthesized material αCS@Fe 3 O 4 was structurally and morphologically characterized by SEM, TEM, XRD, TGA, and XPS analyses. The characterizations confirmed a nanostructural modification of αCS using Fe 3 O 4 nanoparticles. Next, the fabricated material αCS@Fe 3 O 4 was assessed for biocompatibility. The obtained data confirmed the biocompatible nature of the αCS@Fe 3 O 4 . Then, the αCS@Fe 3 O 4 was applied for the osteoconductive differentiation of the hADSCs. The hADSCs osteoconduction was enhanced significantly (11.325 fold increase) in the presence of the αCS@Fe 3 O 4 compared to the control hADSCs. The Alizarin Red S (ARS) staining microscopic images corroborated the osteoconduction enhancement. Furthermore, the relative gene expression of the important osteogenic markers ALP, OCN, and RUNX2 was analyzed. The expression levels were significantly enhanced in the presence of the target material αCS@Fe 3 O 4 . Finally, the immunofluorescent staining of ALP, OCN, and RUNX2 corroborated the enhanced osteoconduction. Thus, in conclusion, αCS@Fe 3 O 4 is a low-cost, economical, biocompatible nano-biomaterial with significant osteoconduction enhancement potential that can be applied in bone defect treatments in the future.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-023-05045-7</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2023-03, Vol.30 (4), p.2385-2398
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2778478404
source SpringerLink Journals - AutoHoldings
subjects Alizarin
Biocompatibility
Biomedical materials
Bioorganic Chemistry
Cellulose
Ceramics
Chemistry
Chemistry and Materials Science
Composites
Gene expression
Glass
Image enhancement
Iron oxides
Nanomaterials
Nanoparticles
Natural Materials
Organic Chemistry
Original Research
Physical Chemistry
Polymer Sciences
Staining
Stem cells
Sustainable Development
Synthesis
X ray photoelectron spectroscopy
title Supermagnetic α-cellulosic nano-scaffolds for human adipose-derived stem cells osteoconduction enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supermagnetic%20%CE%B1-cellulosic%20nano-scaffolds%20for%20human%20adipose-derived%20stem%20cells%20osteoconduction%20enhancement&rft.jtitle=Cellulose%20(London)&rft.au=Lee,%20Seung-Cheol&rft.date=2023-03-01&rft.volume=30&rft.issue=4&rft.spage=2385&rft.epage=2398&rft.pages=2385-2398&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-023-05045-7&rft_dat=%3Cproquest_cross%3E2778478404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778478404&rft_id=info:pmid/&rfr_iscdi=true