IDHUP: Incremental Discovery of High Utility Pattern

As a sub-problem of pattern discovery, utility-oriented pattern mining has recently emerged as a focus of researchers' attention and offers broad application prospects. Considering the dynamic characteristics of the input databases, incremental utility mining methods have been proposed, aiming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wangji Wanglu Jishu Xuekan = Journal of Internet Technology 2023-01, Vol.24 (1), p.135-147
Hauptverfasser: Lele Yu, Lele Yu, Lele Yu, Wensheng Gan, Wensheng Gan, Zhixiong Chen, Zhixiong Chen, Yining Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 135
container_title Wangji Wanglu Jishu Xuekan = Journal of Internet Technology
container_volume 24
creator Lele Yu, Lele Yu
Lele Yu, Wensheng Gan
Wensheng Gan, Zhixiong Chen
Zhixiong Chen, Yining Liu
description As a sub-problem of pattern discovery, utility-oriented pattern mining has recently emerged as a focus of researchers' attention and offers broad application prospects. Considering the dynamic characteristics of the input databases, incremental utility mining methods have been proposed, aiming to discover implicit information/ patterns whose importance/utility is not less than a user-specified threshold from incremental databases. However, due to the explosive growth of the search space, most existing methods perform unsatisfactorily under the low utility threshold, so there is still room for improvement in terms of running efficiency and pruning capacity. Motivated by this, we provide an effective and efficient method called IDHUP by designing an indexed partitioned utility list structure and employing four pruning strategies. With the proposed data structure, IDHUP can not only dynamically update the utility values of patterns but also avoid visiting non-occurred patterns. Moreover, to further exclude ineligible patterns and avoid unnecessary exploration, we put forward the remaining utility reducing strategy and three other revised pruning strategies. Experiments on various datasets demonstrated that the designed IDHUP algorithm has the best performance in terms of running time compared to state-of-the-art algorithms.
doi_str_mv 10.53106/160792642023012401013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2778385613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778385613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-450e8eba394a1da6c0310a6a01e69f71d1c8aba159dcd4246c2a2b9b3d3596c63</originalsourceid><addsrcrecordid>eNptkEFLw0AQhRdRsNT-BVnwHJ3Z2WwSb9KqCRTswZzDZrPRSJvU3a2Qf29qPXjw9Ib3PmaGx9g1wm1MCOoOFSSZUFKAIEAhAQHpjM2OfnQMzv_Ml2zhfVcDCIwFCZwxWazycnPPi944u7N90Fu-6rwZvqwb-dDyvHt752Xotl0Y-UaHYF1_xS5avfV28atzVj49vi7zaP3yXCwf1pEhwhDJGGxqa02Z1NhoZWD6WCsNaFXWJtigSXWtMc4a00ghlRFa1FlNDcWZMorm7Oa0d--Gz4P1ofoYDq6fTlYiSVJKY4U0UepEGTd472xb7V23026sEKqfkqp_S6JvEh9XYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778385613</pqid></control><display><type>article</type><title>IDHUP: Incremental Discovery of High Utility Pattern</title><source>Alma/SFX Local Collection</source><creator>Lele Yu, Lele Yu ; Lele Yu, Wensheng Gan ; Wensheng Gan, Zhixiong Chen ; Zhixiong Chen, Yining Liu</creator><creatorcontrib>Lele Yu, Lele Yu ; Lele Yu, Wensheng Gan ; Wensheng Gan, Zhixiong Chen ; Zhixiong Chen, Yining Liu</creatorcontrib><description>As a sub-problem of pattern discovery, utility-oriented pattern mining has recently emerged as a focus of researchers' attention and offers broad application prospects. Considering the dynamic characteristics of the input databases, incremental utility mining methods have been proposed, aiming to discover implicit information/ patterns whose importance/utility is not less than a user-specified threshold from incremental databases. However, due to the explosive growth of the search space, most existing methods perform unsatisfactorily under the low utility threshold, so there is still room for improvement in terms of running efficiency and pruning capacity. Motivated by this, we provide an effective and efficient method called IDHUP by designing an indexed partitioned utility list structure and employing four pruning strategies. With the proposed data structure, IDHUP can not only dynamically update the utility values of patterns but also avoid visiting non-occurred patterns. Moreover, to further exclude ineligible patterns and avoid unnecessary exploration, we put forward the remaining utility reducing strategy and three other revised pruning strategies. Experiments on various datasets demonstrated that the designed IDHUP algorithm has the best performance in terms of running time compared to state-of-the-art algorithms.</description><identifier>ISSN: 1607-9264</identifier><identifier>EISSN: 1607-9264</identifier><identifier>EISSN: 2079-4029</identifier><identifier>DOI: 10.53106/160792642023012401013</identifier><language>eng</language><publisher>Hualien: National Dong Hwa University, Computer Center</publisher><subject>Algorithms ; Data mining ; Data structures ; Dynamic characteristics ; Pattern analysis</subject><ispartof>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology, 2023-01, Vol.24 (1), p.135-147</ispartof><rights>Copyright National Dong Hwa University, Computer Center 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-450e8eba394a1da6c0310a6a01e69f71d1c8aba159dcd4246c2a2b9b3d3596c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lele Yu, Lele Yu</creatorcontrib><creatorcontrib>Lele Yu, Wensheng Gan</creatorcontrib><creatorcontrib>Wensheng Gan, Zhixiong Chen</creatorcontrib><creatorcontrib>Zhixiong Chen, Yining Liu</creatorcontrib><title>IDHUP: Incremental Discovery of High Utility Pattern</title><title>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology</title><description>As a sub-problem of pattern discovery, utility-oriented pattern mining has recently emerged as a focus of researchers' attention and offers broad application prospects. Considering the dynamic characteristics of the input databases, incremental utility mining methods have been proposed, aiming to discover implicit information/ patterns whose importance/utility is not less than a user-specified threshold from incremental databases. However, due to the explosive growth of the search space, most existing methods perform unsatisfactorily under the low utility threshold, so there is still room for improvement in terms of running efficiency and pruning capacity. Motivated by this, we provide an effective and efficient method called IDHUP by designing an indexed partitioned utility list structure and employing four pruning strategies. With the proposed data structure, IDHUP can not only dynamically update the utility values of patterns but also avoid visiting non-occurred patterns. Moreover, to further exclude ineligible patterns and avoid unnecessary exploration, we put forward the remaining utility reducing strategy and three other revised pruning strategies. Experiments on various datasets demonstrated that the designed IDHUP algorithm has the best performance in terms of running time compared to state-of-the-art algorithms.</description><subject>Algorithms</subject><subject>Data mining</subject><subject>Data structures</subject><subject>Dynamic characteristics</subject><subject>Pattern analysis</subject><issn>1607-9264</issn><issn>1607-9264</issn><issn>2079-4029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkEFLw0AQhRdRsNT-BVnwHJ3Z2WwSb9KqCRTswZzDZrPRSJvU3a2Qf29qPXjw9Ib3PmaGx9g1wm1MCOoOFSSZUFKAIEAhAQHpjM2OfnQMzv_Ml2zhfVcDCIwFCZwxWazycnPPi944u7N90Fu-6rwZvqwb-dDyvHt752Xotl0Y-UaHYF1_xS5avfV28atzVj49vi7zaP3yXCwf1pEhwhDJGGxqa02Z1NhoZWD6WCsNaFXWJtigSXWtMc4a00ghlRFa1FlNDcWZMorm7Oa0d--Gz4P1ofoYDq6fTlYiSVJKY4U0UepEGTd472xb7V23026sEKqfkqp_S6JvEh9XYA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Lele Yu, Lele Yu</creator><creator>Lele Yu, Wensheng Gan</creator><creator>Wensheng Gan, Zhixiong Chen</creator><creator>Zhixiong Chen, Yining Liu</creator><general>National Dong Hwa University, Computer Center</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202301</creationdate><title>IDHUP: Incremental Discovery of High Utility Pattern</title><author>Lele Yu, Lele Yu ; Lele Yu, Wensheng Gan ; Wensheng Gan, Zhixiong Chen ; Zhixiong Chen, Yining Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-450e8eba394a1da6c0310a6a01e69f71d1c8aba159dcd4246c2a2b9b3d3596c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Data mining</topic><topic>Data structures</topic><topic>Dynamic characteristics</topic><topic>Pattern analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lele Yu, Lele Yu</creatorcontrib><creatorcontrib>Lele Yu, Wensheng Gan</creatorcontrib><creatorcontrib>Wensheng Gan, Zhixiong Chen</creatorcontrib><creatorcontrib>Zhixiong Chen, Yining Liu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lele Yu, Lele Yu</au><au>Lele Yu, Wensheng Gan</au><au>Wensheng Gan, Zhixiong Chen</au><au>Zhixiong Chen, Yining Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IDHUP: Incremental Discovery of High Utility Pattern</atitle><jtitle>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology</jtitle><date>2023-01</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>135</spage><epage>147</epage><pages>135-147</pages><issn>1607-9264</issn><eissn>1607-9264</eissn><eissn>2079-4029</eissn><abstract>As a sub-problem of pattern discovery, utility-oriented pattern mining has recently emerged as a focus of researchers' attention and offers broad application prospects. Considering the dynamic characteristics of the input databases, incremental utility mining methods have been proposed, aiming to discover implicit information/ patterns whose importance/utility is not less than a user-specified threshold from incremental databases. However, due to the explosive growth of the search space, most existing methods perform unsatisfactorily under the low utility threshold, so there is still room for improvement in terms of running efficiency and pruning capacity. Motivated by this, we provide an effective and efficient method called IDHUP by designing an indexed partitioned utility list structure and employing four pruning strategies. With the proposed data structure, IDHUP can not only dynamically update the utility values of patterns but also avoid visiting non-occurred patterns. Moreover, to further exclude ineligible patterns and avoid unnecessary exploration, we put forward the remaining utility reducing strategy and three other revised pruning strategies. Experiments on various datasets demonstrated that the designed IDHUP algorithm has the best performance in terms of running time compared to state-of-the-art algorithms.</abstract><cop>Hualien</cop><pub>National Dong Hwa University, Computer Center</pub><doi>10.53106/160792642023012401013</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1607-9264
ispartof Wangji Wanglu Jishu Xuekan = Journal of Internet Technology, 2023-01, Vol.24 (1), p.135-147
issn 1607-9264
1607-9264
2079-4029
language eng
recordid cdi_proquest_journals_2778385613
source Alma/SFX Local Collection
subjects Algorithms
Data mining
Data structures
Dynamic characteristics
Pattern analysis
title IDHUP: Incremental Discovery of High Utility Pattern
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IDHUP:%20Incremental%20Discovery%20of%20High%20Utility%20Pattern&rft.jtitle=Wangji%20Wanglu%20Jishu%20Xuekan%20=%20Journal%20of%20Internet%20Technology&rft.au=Lele%20Yu,%20Lele%20Yu&rft.date=2023-01&rft.volume=24&rft.issue=1&rft.spage=135&rft.epage=147&rft.pages=135-147&rft.issn=1607-9264&rft.eissn=1607-9264&rft_id=info:doi/10.53106/160792642023012401013&rft_dat=%3Cproquest_cross%3E2778385613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778385613&rft_id=info:pmid/&rfr_iscdi=true