Short-term Load Forecasting Based on Multiple PSO-LSSVM under Electricity Market Environment
Affected by the development of the electricity market and many other factors, it is very difficult to obtain high-performance short-term load forecasting methods. The day-ahead load forecasting of the power grid is deeply studied by dividing 24 hours forecast outputs into several groups and optimizi...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2023-02, Vol.2427 (1), p.12024 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12024 |
container_title | Journal of physics. Conference series |
container_volume | 2427 |
creator | Xu, Jihe Liu, Min Xiang, Wei Chen, Haoyong Mao, Yuwen Jia, Tengteng |
description | Affected by the development of the electricity market and many other factors, it is very difficult to obtain high-performance short-term load forecasting methods. The day-ahead load forecasting of the power grid is deeply studied by dividing 24 hours forecast outputs into several groups and optimizing them respectively. As a result, a new short-term load forecasting method is proposed by considering the load variation trend in different periods. First, through the historical load variation trend analysis, the 24 hours load forecasting output is divided into several sets. Then, the prediction algorithm combining multi-group particle swarm optimization and least squares support vector machine is proposed. Finally, the improved algorithm and the original particle swarm optimization, and the least squares support vector machine algorithm are used to predict the short-term load data of Jiangxi Province. The experiment results show that the improved algorithm can identify the load characteristics of a different time with high prediction accuracy, which has practical application value. |
doi_str_mv | 10.1088/1742-6596/2427/1/012024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2778379695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778379695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2744-75f1b95b8bacd2f59c81908b114e4d0ed0a972ffafb2e3fd77132c3972f5ee973</originalsourceid><addsrcrecordid>eNqFkN9LwzAQgIsoOKd_gwHfhNokbZf0UcfmDzo2qPokhLS9aOfW1CQV9t_bUpkIgvdyx913d_B53jnBVwRzHhAWUX8SJ5OARpQFJMCEYhodeKP95HBfc37snVi7xjjsgo28l-xNG-c7MFuUalmiuTZQSOuq-hXdSAsl0jVatBtXNRtAq2zpp1n2vEBtXYJBsw0UzlRF5XZoIc07ODSrPyuj6y3U7tQ7UnJj4ew7j72n-exxeueny9v76XXqF5RFkc9iRfIkznkui5KqOCk4STDPCYkgKjGUWCaMKiVVTiFUJWMkpEXY92KAhIVj72K42xj90YJ1Yq1bU3cvBWWMhyyZJHFHsYEqjLbWgBKNqbbS7ATBolcpekmiFyZ6lYKIQWW3eTlsVrr5Of2wmma_QdGUqoPDP-D_XnwBURKDKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778379695</pqid></control><display><type>article</type><title>Short-term Load Forecasting Based on Multiple PSO-LSSVM under Electricity Market Environment</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Jihe ; Liu, Min ; Xiang, Wei ; Chen, Haoyong ; Mao, Yuwen ; Jia, Tengteng</creator><creatorcontrib>Xu, Jihe ; Liu, Min ; Xiang, Wei ; Chen, Haoyong ; Mao, Yuwen ; Jia, Tengteng</creatorcontrib><description>Affected by the development of the electricity market and many other factors, it is very difficult to obtain high-performance short-term load forecasting methods. The day-ahead load forecasting of the power grid is deeply studied by dividing 24 hours forecast outputs into several groups and optimizing them respectively. As a result, a new short-term load forecasting method is proposed by considering the load variation trend in different periods. First, through the historical load variation trend analysis, the 24 hours load forecasting output is divided into several sets. Then, the prediction algorithm combining multi-group particle swarm optimization and least squares support vector machine is proposed. Finally, the improved algorithm and the original particle swarm optimization, and the least squares support vector machine algorithm are used to predict the short-term load data of Jiangxi Province. The experiment results show that the improved algorithm can identify the load characteristics of a different time with high prediction accuracy, which has practical application value.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2427/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Electrical loads ; Electricity ; Electricity distribution ; Forecasting ; Least squares ; Load fluctuation ; Particle swarm optimization ; Physics ; Support vector machines ; Trend analysis</subject><ispartof>Journal of physics. Conference series, 2023-02, Vol.2427 (1), p.12024</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2744-75f1b95b8bacd2f59c81908b114e4d0ed0a972ffafb2e3fd77132c3972f5ee973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2427/1/012024/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Xu, Jihe</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Chen, Haoyong</creatorcontrib><creatorcontrib>Mao, Yuwen</creatorcontrib><creatorcontrib>Jia, Tengteng</creatorcontrib><title>Short-term Load Forecasting Based on Multiple PSO-LSSVM under Electricity Market Environment</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Affected by the development of the electricity market and many other factors, it is very difficult to obtain high-performance short-term load forecasting methods. The day-ahead load forecasting of the power grid is deeply studied by dividing 24 hours forecast outputs into several groups and optimizing them respectively. As a result, a new short-term load forecasting method is proposed by considering the load variation trend in different periods. First, through the historical load variation trend analysis, the 24 hours load forecasting output is divided into several sets. Then, the prediction algorithm combining multi-group particle swarm optimization and least squares support vector machine is proposed. Finally, the improved algorithm and the original particle swarm optimization, and the least squares support vector machine algorithm are used to predict the short-term load data of Jiangxi Province. The experiment results show that the improved algorithm can identify the load characteristics of a different time with high prediction accuracy, which has practical application value.</description><subject>Algorithms</subject><subject>Electrical loads</subject><subject>Electricity</subject><subject>Electricity distribution</subject><subject>Forecasting</subject><subject>Least squares</subject><subject>Load fluctuation</subject><subject>Particle swarm optimization</subject><subject>Physics</subject><subject>Support vector machines</subject><subject>Trend analysis</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkN9LwzAQgIsoOKd_gwHfhNokbZf0UcfmDzo2qPokhLS9aOfW1CQV9t_bUpkIgvdyx913d_B53jnBVwRzHhAWUX8SJ5OARpQFJMCEYhodeKP95HBfc37snVi7xjjsgo28l-xNG-c7MFuUalmiuTZQSOuq-hXdSAsl0jVatBtXNRtAq2zpp1n2vEBtXYJBsw0UzlRF5XZoIc07ODSrPyuj6y3U7tQ7UnJj4ew7j72n-exxeueny9v76XXqF5RFkc9iRfIkznkui5KqOCk4STDPCYkgKjGUWCaMKiVVTiFUJWMkpEXY92KAhIVj72K42xj90YJ1Yq1bU3cvBWWMhyyZJHFHsYEqjLbWgBKNqbbS7ATBolcpekmiFyZ6lYKIQWW3eTlsVrr5Of2wmma_QdGUqoPDP-D_XnwBURKDKQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Xu, Jihe</creator><creator>Liu, Min</creator><creator>Xiang, Wei</creator><creator>Chen, Haoyong</creator><creator>Mao, Yuwen</creator><creator>Jia, Tengteng</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230201</creationdate><title>Short-term Load Forecasting Based on Multiple PSO-LSSVM under Electricity Market Environment</title><author>Xu, Jihe ; Liu, Min ; Xiang, Wei ; Chen, Haoyong ; Mao, Yuwen ; Jia, Tengteng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2744-75f1b95b8bacd2f59c81908b114e4d0ed0a972ffafb2e3fd77132c3972f5ee973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Electrical loads</topic><topic>Electricity</topic><topic>Electricity distribution</topic><topic>Forecasting</topic><topic>Least squares</topic><topic>Load fluctuation</topic><topic>Particle swarm optimization</topic><topic>Physics</topic><topic>Support vector machines</topic><topic>Trend analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jihe</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Chen, Haoyong</creatorcontrib><creatorcontrib>Mao, Yuwen</creatorcontrib><creatorcontrib>Jia, Tengteng</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jihe</au><au>Liu, Min</au><au>Xiang, Wei</au><au>Chen, Haoyong</au><au>Mao, Yuwen</au><au>Jia, Tengteng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-term Load Forecasting Based on Multiple PSO-LSSVM under Electricity Market Environment</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>2427</volume><issue>1</issue><spage>12024</spage><pages>12024-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Affected by the development of the electricity market and many other factors, it is very difficult to obtain high-performance short-term load forecasting methods. The day-ahead load forecasting of the power grid is deeply studied by dividing 24 hours forecast outputs into several groups and optimizing them respectively. As a result, a new short-term load forecasting method is proposed by considering the load variation trend in different periods. First, through the historical load variation trend analysis, the 24 hours load forecasting output is divided into several sets. Then, the prediction algorithm combining multi-group particle swarm optimization and least squares support vector machine is proposed. Finally, the improved algorithm and the original particle swarm optimization, and the least squares support vector machine algorithm are used to predict the short-term load data of Jiangxi Province. The experiment results show that the improved algorithm can identify the load characteristics of a different time with high prediction accuracy, which has practical application value.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2427/1/012024</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2023-02, Vol.2427 (1), p.12024 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2778379695 |
source | Institute of Physics IOPscience extra; IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Electrical loads Electricity Electricity distribution Forecasting Least squares Load fluctuation Particle swarm optimization Physics Support vector machines Trend analysis |
title | Short-term Load Forecasting Based on Multiple PSO-LSSVM under Electricity Market Environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-term%20Load%20Forecasting%20Based%20on%20Multiple%20PSO-LSSVM%20under%20Electricity%20Market%20Environment&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Xu,%20Jihe&rft.date=2023-02-01&rft.volume=2427&rft.issue=1&rft.spage=12024&rft.pages=12024-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2427/1/012024&rft_dat=%3Cproquest_iop_j%3E2778379695%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778379695&rft_id=info:pmid/&rfr_iscdi=true |