A Chemical Vapor Deposition Diamond Reactor for Controlled Thin‐Film Growth with Sharp Layer Interfaces
A microwave plasma reactor for diamond growth that allows for highly controllable process conditions is presented. The position of the diamond substrate within the reactor can be accurately controlled. Thus, equilibration of plasma conditions can be carried out after changes in process parameters. W...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2023-02, Vol.220 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 220 |
creator | Schätzle, Philip Reinke, Philipp Herrling, David Götze, Arne Lindner, Lukas Jeske, Jan Kirste, Lutz Knittel, Peter |
description | A microwave plasma reactor for diamond growth that allows for highly controllable process conditions is presented. The position of the diamond substrate within the reactor can be accurately controlled. Thus, equilibration of plasma conditions can be carried out after changes in process parameters. With this approach, sharp layer transitions among doped, undoped, and isotopically controlled diamond films can be obtained. In addition to the sample transfer, the growth temperature is maintained through a substrate heater, and a clean reactor environment is realized by a load‐lock sample exchange system. The plasma conditions are constantly monitored by optical emission spectroscopy. Using this system, the growth of nanoscopic sandwich structures is demonstrated with controlled isotopic ratios down to ≈10 nm thickness and N(V) layers below 50 nm are obtained on (001)‐oriented diamond. Growth rates and doping efficiencies depending on the used methane concentration are presented. Characterization with continuous‐wave optically detected magnetic resonance yields an average contrast of 4.1% per nitrogen vacancy (NV) orientation in layers with a thickness below 100 nm. Depending on the used methane concentration, surface morphology and NV doping homogeneity are influenced as observed by photoluminescence and atomic force microscopy measurements.
A chemical vapor deposition reactor with sample transfer is presented. A lift enables an abrupt removal of the sample from plasma, interrupting the growth process. Growth resumption can then be performed by subsequent reintroduction of the sample at changed plasma compositions. This allows for sharp doping and isotope gradients in grown diamond thin films as required by diamond quantum technologies. |
doi_str_mv | 10.1002/pssa.202200351 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2778218765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778218765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-bfd95738f8ffafbb101b8357b010985762745675dd3140037cc1370ea6fe48e3</originalsourceid><addsrcrecordid>eNqFUE1LwzAYDqLgnF49Bzx3JmnTpMfRuTkYKG54DWmb0Iy2qUnH2M2f4G_0l5gxmUcP7wc8Hy_vA8A9RhOMEHnsvZcTgghBKKb4AowwT0mUxji7PO8IXYMb77cIJTRheATMFOa1ak0pG_gue-vgTPXWm8HYDs6MbG1XwTclyyFAOlRuu8HZplEV3NSm-_78mpumhQtn90MN9ya0dS1dD1fyoBxcdoNyWpbK34IrLRuv7n7nGGzmT5v8OVq9LJb5dBWVMWU4KnSVURZzzbWWuigwwgUPSIEwyjhlKWEJTRmtqhgn4VNWljhmSMlUq4SreAweTra9sx875QextTvXhYuCMMYJ5iylgTU5sUpnvXdKi96ZVrqDwEgc0xTHNMU5zSDIToK9adThH7Z4Xa-nf9ofiox5xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778218765</pqid></control><display><type>article</type><title>A Chemical Vapor Deposition Diamond Reactor for Controlled Thin‐Film Growth with Sharp Layer Interfaces</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Schätzle, Philip ; Reinke, Philipp ; Herrling, David ; Götze, Arne ; Lindner, Lukas ; Jeske, Jan ; Kirste, Lutz ; Knittel, Peter</creator><creatorcontrib>Schätzle, Philip ; Reinke, Philipp ; Herrling, David ; Götze, Arne ; Lindner, Lukas ; Jeske, Jan ; Kirste, Lutz ; Knittel, Peter</creatorcontrib><description>A microwave plasma reactor for diamond growth that allows for highly controllable process conditions is presented. The position of the diamond substrate within the reactor can be accurately controlled. Thus, equilibration of plasma conditions can be carried out after changes in process parameters. With this approach, sharp layer transitions among doped, undoped, and isotopically controlled diamond films can be obtained. In addition to the sample transfer, the growth temperature is maintained through a substrate heater, and a clean reactor environment is realized by a load‐lock sample exchange system. The plasma conditions are constantly monitored by optical emission spectroscopy. Using this system, the growth of nanoscopic sandwich structures is demonstrated with controlled isotopic ratios down to ≈10 nm thickness and N(V) layers below 50 nm are obtained on (001)‐oriented diamond. Growth rates and doping efficiencies depending on the used methane concentration are presented. Characterization with continuous‐wave optically detected magnetic resonance yields an average contrast of 4.1% per nitrogen vacancy (NV) orientation in layers with a thickness below 100 nm. Depending on the used methane concentration, surface morphology and NV doping homogeneity are influenced as observed by photoluminescence and atomic force microscopy measurements.
A chemical vapor deposition reactor with sample transfer is presented. A lift enables an abrupt removal of the sample from plasma, interrupting the growth process. Growth resumption can then be performed by subsequent reintroduction of the sample at changed plasma compositions. This allows for sharp doping and isotope gradients in grown diamond thin films as required by diamond quantum technologies.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202200351</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical vapor deposition ; Controllability ; Diamond films ; diamonds ; Doping ; Film growth ; Homogeneity ; Isotope ratios ; Magnetic resonance ; Methane ; Microwave plasmas ; nitrogen vacancies ; Optical emission spectroscopy ; Photoluminescence ; plasma reactors ; Pollution monitoring ; Process parameters ; quantum devices ; Sandwich structures ; Substrates ; Thickness ; Thin films</subject><ispartof>Physica status solidi. A, Applications and materials science, 2023-02, Vol.220 (4), p.n/a</ispartof><rights>2022 The Authors. physica status solidi (a) applications and materials science published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-bfd95738f8ffafbb101b8357b010985762745675dd3140037cc1370ea6fe48e3</citedby><cites>FETCH-LOGICAL-c3571-bfd95738f8ffafbb101b8357b010985762745675dd3140037cc1370ea6fe48e3</cites><orcidid>0000-0003-3532-506X ; 0000-0002-5274-2650 ; 0000-0001-7008-9299 ; 0000-0002-5814-220X ; 0000-0002-2769-3615 ; 0000-0002-3644-2738 ; 0000-0003-0974-5087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202200351$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202200351$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schätzle, Philip</creatorcontrib><creatorcontrib>Reinke, Philipp</creatorcontrib><creatorcontrib>Herrling, David</creatorcontrib><creatorcontrib>Götze, Arne</creatorcontrib><creatorcontrib>Lindner, Lukas</creatorcontrib><creatorcontrib>Jeske, Jan</creatorcontrib><creatorcontrib>Kirste, Lutz</creatorcontrib><creatorcontrib>Knittel, Peter</creatorcontrib><title>A Chemical Vapor Deposition Diamond Reactor for Controlled Thin‐Film Growth with Sharp Layer Interfaces</title><title>Physica status solidi. A, Applications and materials science</title><description>A microwave plasma reactor for diamond growth that allows for highly controllable process conditions is presented. The position of the diamond substrate within the reactor can be accurately controlled. Thus, equilibration of plasma conditions can be carried out after changes in process parameters. With this approach, sharp layer transitions among doped, undoped, and isotopically controlled diamond films can be obtained. In addition to the sample transfer, the growth temperature is maintained through a substrate heater, and a clean reactor environment is realized by a load‐lock sample exchange system. The plasma conditions are constantly monitored by optical emission spectroscopy. Using this system, the growth of nanoscopic sandwich structures is demonstrated with controlled isotopic ratios down to ≈10 nm thickness and N(V) layers below 50 nm are obtained on (001)‐oriented diamond. Growth rates and doping efficiencies depending on the used methane concentration are presented. Characterization with continuous‐wave optically detected magnetic resonance yields an average contrast of 4.1% per nitrogen vacancy (NV) orientation in layers with a thickness below 100 nm. Depending on the used methane concentration, surface morphology and NV doping homogeneity are influenced as observed by photoluminescence and atomic force microscopy measurements.
A chemical vapor deposition reactor with sample transfer is presented. A lift enables an abrupt removal of the sample from plasma, interrupting the growth process. Growth resumption can then be performed by subsequent reintroduction of the sample at changed plasma compositions. This allows for sharp doping and isotope gradients in grown diamond thin films as required by diamond quantum technologies.</description><subject>Chemical vapor deposition</subject><subject>Controllability</subject><subject>Diamond films</subject><subject>diamonds</subject><subject>Doping</subject><subject>Film growth</subject><subject>Homogeneity</subject><subject>Isotope ratios</subject><subject>Magnetic resonance</subject><subject>Methane</subject><subject>Microwave plasmas</subject><subject>nitrogen vacancies</subject><subject>Optical emission spectroscopy</subject><subject>Photoluminescence</subject><subject>plasma reactors</subject><subject>Pollution monitoring</subject><subject>Process parameters</subject><subject>quantum devices</subject><subject>Sandwich structures</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Thin films</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUE1LwzAYDqLgnF49Bzx3JmnTpMfRuTkYKG54DWmb0Iy2qUnH2M2f4G_0l5gxmUcP7wc8Hy_vA8A9RhOMEHnsvZcTgghBKKb4AowwT0mUxji7PO8IXYMb77cIJTRheATMFOa1ak0pG_gue-vgTPXWm8HYDs6MbG1XwTclyyFAOlRuu8HZplEV3NSm-_78mpumhQtn90MN9ya0dS1dD1fyoBxcdoNyWpbK34IrLRuv7n7nGGzmT5v8OVq9LJb5dBWVMWU4KnSVURZzzbWWuigwwgUPSIEwyjhlKWEJTRmtqhgn4VNWljhmSMlUq4SreAweTra9sx875QextTvXhYuCMMYJ5iylgTU5sUpnvXdKi96ZVrqDwEgc0xTHNMU5zSDIToK9adThH7Z4Xa-nf9ofiox5xg</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Schätzle, Philip</creator><creator>Reinke, Philipp</creator><creator>Herrling, David</creator><creator>Götze, Arne</creator><creator>Lindner, Lukas</creator><creator>Jeske, Jan</creator><creator>Kirste, Lutz</creator><creator>Knittel, Peter</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3532-506X</orcidid><orcidid>https://orcid.org/0000-0002-5274-2650</orcidid><orcidid>https://orcid.org/0000-0001-7008-9299</orcidid><orcidid>https://orcid.org/0000-0002-5814-220X</orcidid><orcidid>https://orcid.org/0000-0002-2769-3615</orcidid><orcidid>https://orcid.org/0000-0002-3644-2738</orcidid><orcidid>https://orcid.org/0000-0003-0974-5087</orcidid></search><sort><creationdate>202302</creationdate><title>A Chemical Vapor Deposition Diamond Reactor for Controlled Thin‐Film Growth with Sharp Layer Interfaces</title><author>Schätzle, Philip ; Reinke, Philipp ; Herrling, David ; Götze, Arne ; Lindner, Lukas ; Jeske, Jan ; Kirste, Lutz ; Knittel, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-bfd95738f8ffafbb101b8357b010985762745675dd3140037cc1370ea6fe48e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical vapor deposition</topic><topic>Controllability</topic><topic>Diamond films</topic><topic>diamonds</topic><topic>Doping</topic><topic>Film growth</topic><topic>Homogeneity</topic><topic>Isotope ratios</topic><topic>Magnetic resonance</topic><topic>Methane</topic><topic>Microwave plasmas</topic><topic>nitrogen vacancies</topic><topic>Optical emission spectroscopy</topic><topic>Photoluminescence</topic><topic>plasma reactors</topic><topic>Pollution monitoring</topic><topic>Process parameters</topic><topic>quantum devices</topic><topic>Sandwich structures</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schätzle, Philip</creatorcontrib><creatorcontrib>Reinke, Philipp</creatorcontrib><creatorcontrib>Herrling, David</creatorcontrib><creatorcontrib>Götze, Arne</creatorcontrib><creatorcontrib>Lindner, Lukas</creatorcontrib><creatorcontrib>Jeske, Jan</creatorcontrib><creatorcontrib>Kirste, Lutz</creatorcontrib><creatorcontrib>Knittel, Peter</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schätzle, Philip</au><au>Reinke, Philipp</au><au>Herrling, David</au><au>Götze, Arne</au><au>Lindner, Lukas</au><au>Jeske, Jan</au><au>Kirste, Lutz</au><au>Knittel, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Chemical Vapor Deposition Diamond Reactor for Controlled Thin‐Film Growth with Sharp Layer Interfaces</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2023-02</date><risdate>2023</risdate><volume>220</volume><issue>4</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>A microwave plasma reactor for diamond growth that allows for highly controllable process conditions is presented. The position of the diamond substrate within the reactor can be accurately controlled. Thus, equilibration of plasma conditions can be carried out after changes in process parameters. With this approach, sharp layer transitions among doped, undoped, and isotopically controlled diamond films can be obtained. In addition to the sample transfer, the growth temperature is maintained through a substrate heater, and a clean reactor environment is realized by a load‐lock sample exchange system. The plasma conditions are constantly monitored by optical emission spectroscopy. Using this system, the growth of nanoscopic sandwich structures is demonstrated with controlled isotopic ratios down to ≈10 nm thickness and N(V) layers below 50 nm are obtained on (001)‐oriented diamond. Growth rates and doping efficiencies depending on the used methane concentration are presented. Characterization with continuous‐wave optically detected magnetic resonance yields an average contrast of 4.1% per nitrogen vacancy (NV) orientation in layers with a thickness below 100 nm. Depending on the used methane concentration, surface morphology and NV doping homogeneity are influenced as observed by photoluminescence and atomic force microscopy measurements.
A chemical vapor deposition reactor with sample transfer is presented. A lift enables an abrupt removal of the sample from plasma, interrupting the growth process. Growth resumption can then be performed by subsequent reintroduction of the sample at changed plasma compositions. This allows for sharp doping and isotope gradients in grown diamond thin films as required by diamond quantum technologies.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202200351</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3532-506X</orcidid><orcidid>https://orcid.org/0000-0002-5274-2650</orcidid><orcidid>https://orcid.org/0000-0001-7008-9299</orcidid><orcidid>https://orcid.org/0000-0002-5814-220X</orcidid><orcidid>https://orcid.org/0000-0002-2769-3615</orcidid><orcidid>https://orcid.org/0000-0002-3644-2738</orcidid><orcidid>https://orcid.org/0000-0003-0974-5087</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2023-02, Vol.220 (4), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2778218765 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Chemical vapor deposition Controllability Diamond films diamonds Doping Film growth Homogeneity Isotope ratios Magnetic resonance Methane Microwave plasmas nitrogen vacancies Optical emission spectroscopy Photoluminescence plasma reactors Pollution monitoring Process parameters quantum devices Sandwich structures Substrates Thickness Thin films |
title | A Chemical Vapor Deposition Diamond Reactor for Controlled Thin‐Film Growth with Sharp Layer Interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Chemical%20Vapor%20Deposition%20Diamond%20Reactor%20for%20Controlled%20Thin%E2%80%90Film%20Growth%20with%20Sharp%20Layer%20Interfaces&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Sch%C3%A4tzle,%20Philip&rft.date=2023-02&rft.volume=220&rft.issue=4&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202200351&rft_dat=%3Cproquest_cross%3E2778218765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778218765&rft_id=info:pmid/&rfr_iscdi=true |