A Chemical Vapor Deposition Diamond Reactor for Controlled Thin‐Film Growth with Sharp Layer Interfaces

A microwave plasma reactor for diamond growth that allows for highly controllable process conditions is presented. The position of the diamond substrate within the reactor can be accurately controlled. Thus, equilibration of plasma conditions can be carried out after changes in process parameters. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2023-02, Vol.220 (4), p.n/a
Hauptverfasser: Schätzle, Philip, Reinke, Philipp, Herrling, David, Götze, Arne, Lindner, Lukas, Jeske, Jan, Kirste, Lutz, Knittel, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 220
creator Schätzle, Philip
Reinke, Philipp
Herrling, David
Götze, Arne
Lindner, Lukas
Jeske, Jan
Kirste, Lutz
Knittel, Peter
description A microwave plasma reactor for diamond growth that allows for highly controllable process conditions is presented. The position of the diamond substrate within the reactor can be accurately controlled. Thus, equilibration of plasma conditions can be carried out after changes in process parameters. With this approach, sharp layer transitions among doped, undoped, and isotopically controlled diamond films can be obtained. In addition to the sample transfer, the growth temperature is maintained through a substrate heater, and a clean reactor environment is realized by a load‐lock sample exchange system. The plasma conditions are constantly monitored by optical emission spectroscopy. Using this system, the growth of nanoscopic sandwich structures is demonstrated with controlled isotopic ratios down to ≈10 nm thickness and N(V) layers below 50 nm are obtained on (001)‐oriented diamond. Growth rates and doping efficiencies depending on the used methane concentration are presented. Characterization with continuous‐wave optically detected magnetic resonance yields an average contrast of 4.1% per nitrogen vacancy (NV) orientation in layers with a thickness below 100 nm. Depending on the used methane concentration, surface morphology and NV doping homogeneity are influenced as observed by photoluminescence and atomic force microscopy measurements. A chemical vapor deposition reactor with sample transfer is presented. A lift enables an abrupt removal of the sample from plasma, interrupting the growth process. Growth resumption can then be performed by subsequent reintroduction of the sample at changed plasma compositions. This allows for sharp doping and isotope gradients in grown diamond thin films as required by diamond quantum technologies.
doi_str_mv 10.1002/pssa.202200351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2778218765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778218765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-bfd95738f8ffafbb101b8357b010985762745675dd3140037cc1370ea6fe48e3</originalsourceid><addsrcrecordid>eNqFUE1LwzAYDqLgnF49Bzx3JmnTpMfRuTkYKG54DWmb0Iy2qUnH2M2f4G_0l5gxmUcP7wc8Hy_vA8A9RhOMEHnsvZcTgghBKKb4AowwT0mUxji7PO8IXYMb77cIJTRheATMFOa1ak0pG_gue-vgTPXWm8HYDs6MbG1XwTclyyFAOlRuu8HZplEV3NSm-_78mpumhQtn90MN9ya0dS1dD1fyoBxcdoNyWpbK34IrLRuv7n7nGGzmT5v8OVq9LJb5dBWVMWU4KnSVURZzzbWWuigwwgUPSIEwyjhlKWEJTRmtqhgn4VNWljhmSMlUq4SreAweTra9sx875QextTvXhYuCMMYJ5iylgTU5sUpnvXdKi96ZVrqDwEgc0xTHNMU5zSDIToK9adThH7Z4Xa-nf9ofiox5xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778218765</pqid></control><display><type>article</type><title>A Chemical Vapor Deposition Diamond Reactor for Controlled Thin‐Film Growth with Sharp Layer Interfaces</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Schätzle, Philip ; Reinke, Philipp ; Herrling, David ; Götze, Arne ; Lindner, Lukas ; Jeske, Jan ; Kirste, Lutz ; Knittel, Peter</creator><creatorcontrib>Schätzle, Philip ; Reinke, Philipp ; Herrling, David ; Götze, Arne ; Lindner, Lukas ; Jeske, Jan ; Kirste, Lutz ; Knittel, Peter</creatorcontrib><description>A microwave plasma reactor for diamond growth that allows for highly controllable process conditions is presented. The position of the diamond substrate within the reactor can be accurately controlled. Thus, equilibration of plasma conditions can be carried out after changes in process parameters. With this approach, sharp layer transitions among doped, undoped, and isotopically controlled diamond films can be obtained. In addition to the sample transfer, the growth temperature is maintained through a substrate heater, and a clean reactor environment is realized by a load‐lock sample exchange system. The plasma conditions are constantly monitored by optical emission spectroscopy. Using this system, the growth of nanoscopic sandwich structures is demonstrated with controlled isotopic ratios down to ≈10 nm thickness and N(V) layers below 50 nm are obtained on (001)‐oriented diamond. Growth rates and doping efficiencies depending on the used methane concentration are presented. Characterization with continuous‐wave optically detected magnetic resonance yields an average contrast of 4.1% per nitrogen vacancy (NV) orientation in layers with a thickness below 100 nm. Depending on the used methane concentration, surface morphology and NV doping homogeneity are influenced as observed by photoluminescence and atomic force microscopy measurements. A chemical vapor deposition reactor with sample transfer is presented. A lift enables an abrupt removal of the sample from plasma, interrupting the growth process. Growth resumption can then be performed by subsequent reintroduction of the sample at changed plasma compositions. This allows for sharp doping and isotope gradients in grown diamond thin films as required by diamond quantum technologies.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202200351</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical vapor deposition ; Controllability ; Diamond films ; diamonds ; Doping ; Film growth ; Homogeneity ; Isotope ratios ; Magnetic resonance ; Methane ; Microwave plasmas ; nitrogen vacancies ; Optical emission spectroscopy ; Photoluminescence ; plasma reactors ; Pollution monitoring ; Process parameters ; quantum devices ; Sandwich structures ; Substrates ; Thickness ; Thin films</subject><ispartof>Physica status solidi. A, Applications and materials science, 2023-02, Vol.220 (4), p.n/a</ispartof><rights>2022 The Authors. physica status solidi (a) applications and materials science published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-bfd95738f8ffafbb101b8357b010985762745675dd3140037cc1370ea6fe48e3</citedby><cites>FETCH-LOGICAL-c3571-bfd95738f8ffafbb101b8357b010985762745675dd3140037cc1370ea6fe48e3</cites><orcidid>0000-0003-3532-506X ; 0000-0002-5274-2650 ; 0000-0001-7008-9299 ; 0000-0002-5814-220X ; 0000-0002-2769-3615 ; 0000-0002-3644-2738 ; 0000-0003-0974-5087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202200351$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202200351$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schätzle, Philip</creatorcontrib><creatorcontrib>Reinke, Philipp</creatorcontrib><creatorcontrib>Herrling, David</creatorcontrib><creatorcontrib>Götze, Arne</creatorcontrib><creatorcontrib>Lindner, Lukas</creatorcontrib><creatorcontrib>Jeske, Jan</creatorcontrib><creatorcontrib>Kirste, Lutz</creatorcontrib><creatorcontrib>Knittel, Peter</creatorcontrib><title>A Chemical Vapor Deposition Diamond Reactor for Controlled Thin‐Film Growth with Sharp Layer Interfaces</title><title>Physica status solidi. A, Applications and materials science</title><description>A microwave plasma reactor for diamond growth that allows for highly controllable process conditions is presented. The position of the diamond substrate within the reactor can be accurately controlled. Thus, equilibration of plasma conditions can be carried out after changes in process parameters. With this approach, sharp layer transitions among doped, undoped, and isotopically controlled diamond films can be obtained. In addition to the sample transfer, the growth temperature is maintained through a substrate heater, and a clean reactor environment is realized by a load‐lock sample exchange system. The plasma conditions are constantly monitored by optical emission spectroscopy. Using this system, the growth of nanoscopic sandwich structures is demonstrated with controlled isotopic ratios down to ≈10 nm thickness and N(V) layers below 50 nm are obtained on (001)‐oriented diamond. Growth rates and doping efficiencies depending on the used methane concentration are presented. Characterization with continuous‐wave optically detected magnetic resonance yields an average contrast of 4.1% per nitrogen vacancy (NV) orientation in layers with a thickness below 100 nm. Depending on the used methane concentration, surface morphology and NV doping homogeneity are influenced as observed by photoluminescence and atomic force microscopy measurements. A chemical vapor deposition reactor with sample transfer is presented. A lift enables an abrupt removal of the sample from plasma, interrupting the growth process. Growth resumption can then be performed by subsequent reintroduction of the sample at changed plasma compositions. This allows for sharp doping and isotope gradients in grown diamond thin films as required by diamond quantum technologies.</description><subject>Chemical vapor deposition</subject><subject>Controllability</subject><subject>Diamond films</subject><subject>diamonds</subject><subject>Doping</subject><subject>Film growth</subject><subject>Homogeneity</subject><subject>Isotope ratios</subject><subject>Magnetic resonance</subject><subject>Methane</subject><subject>Microwave plasmas</subject><subject>nitrogen vacancies</subject><subject>Optical emission spectroscopy</subject><subject>Photoluminescence</subject><subject>plasma reactors</subject><subject>Pollution monitoring</subject><subject>Process parameters</subject><subject>quantum devices</subject><subject>Sandwich structures</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Thin films</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUE1LwzAYDqLgnF49Bzx3JmnTpMfRuTkYKG54DWmb0Iy2qUnH2M2f4G_0l5gxmUcP7wc8Hy_vA8A9RhOMEHnsvZcTgghBKKb4AowwT0mUxji7PO8IXYMb77cIJTRheATMFOa1ak0pG_gue-vgTPXWm8HYDs6MbG1XwTclyyFAOlRuu8HZplEV3NSm-_78mpumhQtn90MN9ya0dS1dD1fyoBxcdoNyWpbK34IrLRuv7n7nGGzmT5v8OVq9LJb5dBWVMWU4KnSVURZzzbWWuigwwgUPSIEwyjhlKWEJTRmtqhgn4VNWljhmSMlUq4SreAweTra9sx875QextTvXhYuCMMYJ5iylgTU5sUpnvXdKi96ZVrqDwEgc0xTHNMU5zSDIToK9adThH7Z4Xa-nf9ofiox5xg</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Schätzle, Philip</creator><creator>Reinke, Philipp</creator><creator>Herrling, David</creator><creator>Götze, Arne</creator><creator>Lindner, Lukas</creator><creator>Jeske, Jan</creator><creator>Kirste, Lutz</creator><creator>Knittel, Peter</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3532-506X</orcidid><orcidid>https://orcid.org/0000-0002-5274-2650</orcidid><orcidid>https://orcid.org/0000-0001-7008-9299</orcidid><orcidid>https://orcid.org/0000-0002-5814-220X</orcidid><orcidid>https://orcid.org/0000-0002-2769-3615</orcidid><orcidid>https://orcid.org/0000-0002-3644-2738</orcidid><orcidid>https://orcid.org/0000-0003-0974-5087</orcidid></search><sort><creationdate>202302</creationdate><title>A Chemical Vapor Deposition Diamond Reactor for Controlled Thin‐Film Growth with Sharp Layer Interfaces</title><author>Schätzle, Philip ; Reinke, Philipp ; Herrling, David ; Götze, Arne ; Lindner, Lukas ; Jeske, Jan ; Kirste, Lutz ; Knittel, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-bfd95738f8ffafbb101b8357b010985762745675dd3140037cc1370ea6fe48e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical vapor deposition</topic><topic>Controllability</topic><topic>Diamond films</topic><topic>diamonds</topic><topic>Doping</topic><topic>Film growth</topic><topic>Homogeneity</topic><topic>Isotope ratios</topic><topic>Magnetic resonance</topic><topic>Methane</topic><topic>Microwave plasmas</topic><topic>nitrogen vacancies</topic><topic>Optical emission spectroscopy</topic><topic>Photoluminescence</topic><topic>plasma reactors</topic><topic>Pollution monitoring</topic><topic>Process parameters</topic><topic>quantum devices</topic><topic>Sandwich structures</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schätzle, Philip</creatorcontrib><creatorcontrib>Reinke, Philipp</creatorcontrib><creatorcontrib>Herrling, David</creatorcontrib><creatorcontrib>Götze, Arne</creatorcontrib><creatorcontrib>Lindner, Lukas</creatorcontrib><creatorcontrib>Jeske, Jan</creatorcontrib><creatorcontrib>Kirste, Lutz</creatorcontrib><creatorcontrib>Knittel, Peter</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schätzle, Philip</au><au>Reinke, Philipp</au><au>Herrling, David</au><au>Götze, Arne</au><au>Lindner, Lukas</au><au>Jeske, Jan</au><au>Kirste, Lutz</au><au>Knittel, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Chemical Vapor Deposition Diamond Reactor for Controlled Thin‐Film Growth with Sharp Layer Interfaces</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2023-02</date><risdate>2023</risdate><volume>220</volume><issue>4</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>A microwave plasma reactor for diamond growth that allows for highly controllable process conditions is presented. The position of the diamond substrate within the reactor can be accurately controlled. Thus, equilibration of plasma conditions can be carried out after changes in process parameters. With this approach, sharp layer transitions among doped, undoped, and isotopically controlled diamond films can be obtained. In addition to the sample transfer, the growth temperature is maintained through a substrate heater, and a clean reactor environment is realized by a load‐lock sample exchange system. The plasma conditions are constantly monitored by optical emission spectroscopy. Using this system, the growth of nanoscopic sandwich structures is demonstrated with controlled isotopic ratios down to ≈10 nm thickness and N(V) layers below 50 nm are obtained on (001)‐oriented diamond. Growth rates and doping efficiencies depending on the used methane concentration are presented. Characterization with continuous‐wave optically detected magnetic resonance yields an average contrast of 4.1% per nitrogen vacancy (NV) orientation in layers with a thickness below 100 nm. Depending on the used methane concentration, surface morphology and NV doping homogeneity are influenced as observed by photoluminescence and atomic force microscopy measurements. A chemical vapor deposition reactor with sample transfer is presented. A lift enables an abrupt removal of the sample from plasma, interrupting the growth process. Growth resumption can then be performed by subsequent reintroduction of the sample at changed plasma compositions. This allows for sharp doping and isotope gradients in grown diamond thin films as required by diamond quantum technologies.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202200351</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3532-506X</orcidid><orcidid>https://orcid.org/0000-0002-5274-2650</orcidid><orcidid>https://orcid.org/0000-0001-7008-9299</orcidid><orcidid>https://orcid.org/0000-0002-5814-220X</orcidid><orcidid>https://orcid.org/0000-0002-2769-3615</orcidid><orcidid>https://orcid.org/0000-0002-3644-2738</orcidid><orcidid>https://orcid.org/0000-0003-0974-5087</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2023-02, Vol.220 (4), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2778218765
source Wiley Online Library - AutoHoldings Journals
subjects Chemical vapor deposition
Controllability
Diamond films
diamonds
Doping
Film growth
Homogeneity
Isotope ratios
Magnetic resonance
Methane
Microwave plasmas
nitrogen vacancies
Optical emission spectroscopy
Photoluminescence
plasma reactors
Pollution monitoring
Process parameters
quantum devices
Sandwich structures
Substrates
Thickness
Thin films
title A Chemical Vapor Deposition Diamond Reactor for Controlled Thin‐Film Growth with Sharp Layer Interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Chemical%20Vapor%20Deposition%20Diamond%20Reactor%20for%20Controlled%20Thin%E2%80%90Film%20Growth%20with%20Sharp%20Layer%20Interfaces&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Sch%C3%A4tzle,%20Philip&rft.date=2023-02&rft.volume=220&rft.issue=4&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202200351&rft_dat=%3Cproquest_cross%3E2778218765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778218765&rft_id=info:pmid/&rfr_iscdi=true