Reinforcing the efficiency and stability of perovskite solar cells using a cesium sulfate additive
Rapid charge injection and extraction are two critical characteristics craved in electron transporting layers (ETLs) for highly efficient planar perovskite solar cells (PSCs). In this research work, a buried interface reinforcing tactics is demonstrated for assembling highly efficient and stable PSC...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2023-03, Vol.34 (7), p.571, Article 571 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 571 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 34 |
creator | Hua, Yikun Feng, Zhiying Weng, Chaocang Chen, Xiaohong Huang, Sumei |
description | Rapid charge injection and extraction are two critical characteristics craved in electron transporting layers (ETLs) for highly efficient planar perovskite solar cells (PSCs). In this research work, a buried interface reinforcing tactics is demonstrated for assembling highly efficient and stable PSCs via depositing Cs
2
SO
4
precursor films on SnO
2
ETLs. It is found that the incorporation of Cs
2
SO
4
onto SnO
2
layers can increase the electronic conductivity and also improve the surface coverage and interface flatness via Sn–O–Cs bonding. Additionally, sulfate bridges (
SO
4
2
-
) engrafted on the surface of tin oxide generate a seamless integration of high-quality perovskite absorber on ETL that expedite comprehensive transport kinetics in the device. The perovskite morphology is considerably modulated to produce enlarged grain sizes and improved crystallinity. Eventually, PSCs fabricated from Cs
2
SO
4
-SnO
2
composite electrodes display power conversion efficiencies up to 20.93% with high ambient stability and small hysteresis. Under ambient conditions (25–30 °C, 50–65% relative humidity), the device retains 70% of the initial efficiency after degradation testing for 350 h. |
doi_str_mv | 10.1007/s10854-023-10008-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2778133325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778133325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d34411cb768c116bf46c468eea5bbe8fc7f30f47578f3e5053e874feb7fce6ba3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9WgyeXYpxRcUBFFwF5LMTU2dztRkptB_b2oFd64uB77vXDgIXVJyTQlRN5kSLXhFalaVTHQlj9CECsUqruv3YzQhM6EqLur6FJ3lvCqM5ExPkHuB2IU--dgt8fABGEKIPkLnd9h2Dc6DdbGNww73AW8g9dv8GQfAuW9twh7aNuMx72VbUo7jGuexDbYgtmniELdwjk6CbTNc_N4peru_e50_Vovnh6f57aLyjM6GqmGcU-qdktpTKl3g0nOpAaxwDnTwKjASuBJKBwaCCAZa8QBOBQ_SWTZFV4feTeq_RsiDWfVj6spLUyulKWOsFoWqD5RPfc4JgtmkuLZpZygx-y3NYUtTtjQ_WxpZJHaQcoG7JaS_6n-sbw2IeP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778133325</pqid></control><display><type>article</type><title>Reinforcing the efficiency and stability of perovskite solar cells using a cesium sulfate additive</title><source>SpringerNature Journals</source><creator>Hua, Yikun ; Feng, Zhiying ; Weng, Chaocang ; Chen, Xiaohong ; Huang, Sumei</creator><creatorcontrib>Hua, Yikun ; Feng, Zhiying ; Weng, Chaocang ; Chen, Xiaohong ; Huang, Sumei</creatorcontrib><description>Rapid charge injection and extraction are two critical characteristics craved in electron transporting layers (ETLs) for highly efficient planar perovskite solar cells (PSCs). In this research work, a buried interface reinforcing tactics is demonstrated for assembling highly efficient and stable PSCs via depositing Cs
2
SO
4
precursor films on SnO
2
ETLs. It is found that the incorporation of Cs
2
SO
4
onto SnO
2
layers can increase the electronic conductivity and also improve the surface coverage and interface flatness via Sn–O–Cs bonding. Additionally, sulfate bridges (
SO
4
2
-
) engrafted on the surface of tin oxide generate a seamless integration of high-quality perovskite absorber on ETL that expedite comprehensive transport kinetics in the device. The perovskite morphology is considerably modulated to produce enlarged grain sizes and improved crystallinity. Eventually, PSCs fabricated from Cs
2
SO
4
-SnO
2
composite electrodes display power conversion efficiencies up to 20.93% with high ambient stability and small hysteresis. Under ambient conditions (25–30 °C, 50–65% relative humidity), the device retains 70% of the initial efficiency after degradation testing for 350 h.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-10008-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cesium ; Characterization and Evaluation of Materials ; Charge injection ; Chemistry and Materials Science ; Electron transport ; Energy conversion efficiency ; Grain size ; Materials Science ; Optical and Electronic Materials ; Perovskites ; Photovoltaic cells ; Relative humidity ; Solar cells ; Stability ; Tactics ; Tin ; Tin dioxide ; Tin oxides</subject><ispartof>Journal of materials science. Materials in electronics, 2023-03, Vol.34 (7), p.571, Article 571</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d34411cb768c116bf46c468eea5bbe8fc7f30f47578f3e5053e874feb7fce6ba3</citedby><cites>FETCH-LOGICAL-c319t-d34411cb768c116bf46c468eea5bbe8fc7f30f47578f3e5053e874feb7fce6ba3</cites><orcidid>0000-0001-5283-3918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-10008-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-10008-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hua, Yikun</creatorcontrib><creatorcontrib>Feng, Zhiying</creatorcontrib><creatorcontrib>Weng, Chaocang</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><creatorcontrib>Huang, Sumei</creatorcontrib><title>Reinforcing the efficiency and stability of perovskite solar cells using a cesium sulfate additive</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Rapid charge injection and extraction are two critical characteristics craved in electron transporting layers (ETLs) for highly efficient planar perovskite solar cells (PSCs). In this research work, a buried interface reinforcing tactics is demonstrated for assembling highly efficient and stable PSCs via depositing Cs
2
SO
4
precursor films on SnO
2
ETLs. It is found that the incorporation of Cs
2
SO
4
onto SnO
2
layers can increase the electronic conductivity and also improve the surface coverage and interface flatness via Sn–O–Cs bonding. Additionally, sulfate bridges (
SO
4
2
-
) engrafted on the surface of tin oxide generate a seamless integration of high-quality perovskite absorber on ETL that expedite comprehensive transport kinetics in the device. The perovskite morphology is considerably modulated to produce enlarged grain sizes and improved crystallinity. Eventually, PSCs fabricated from Cs
2
SO
4
-SnO
2
composite electrodes display power conversion efficiencies up to 20.93% with high ambient stability and small hysteresis. Under ambient conditions (25–30 °C, 50–65% relative humidity), the device retains 70% of the initial efficiency after degradation testing for 350 h.</description><subject>Cesium</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge injection</subject><subject>Chemistry and Materials Science</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Relative humidity</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Tactics</subject><subject>Tin</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9WgyeXYpxRcUBFFwF5LMTU2dztRkptB_b2oFd64uB77vXDgIXVJyTQlRN5kSLXhFalaVTHQlj9CECsUqruv3YzQhM6EqLur6FJ3lvCqM5ExPkHuB2IU--dgt8fABGEKIPkLnd9h2Dc6DdbGNww73AW8g9dv8GQfAuW9twh7aNuMx72VbUo7jGuexDbYgtmniELdwjk6CbTNc_N4peru_e50_Vovnh6f57aLyjM6GqmGcU-qdktpTKl3g0nOpAaxwDnTwKjASuBJKBwaCCAZa8QBOBQ_SWTZFV4feTeq_RsiDWfVj6spLUyulKWOsFoWqD5RPfc4JgtmkuLZpZygx-y3NYUtTtjQ_WxpZJHaQcoG7JaS_6n-sbw2IeP8</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Hua, Yikun</creator><creator>Feng, Zhiying</creator><creator>Weng, Chaocang</creator><creator>Chen, Xiaohong</creator><creator>Huang, Sumei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5283-3918</orcidid></search><sort><creationdate>20230301</creationdate><title>Reinforcing the efficiency and stability of perovskite solar cells using a cesium sulfate additive</title><author>Hua, Yikun ; Feng, Zhiying ; Weng, Chaocang ; Chen, Xiaohong ; Huang, Sumei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d34411cb768c116bf46c468eea5bbe8fc7f30f47578f3e5053e874feb7fce6ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cesium</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge injection</topic><topic>Chemistry and Materials Science</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Relative humidity</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Tactics</topic><topic>Tin</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Yikun</creatorcontrib><creatorcontrib>Feng, Zhiying</creatorcontrib><creatorcontrib>Weng, Chaocang</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><creatorcontrib>Huang, Sumei</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Yikun</au><au>Feng, Zhiying</au><au>Weng, Chaocang</au><au>Chen, Xiaohong</au><au>Huang, Sumei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcing the efficiency and stability of perovskite solar cells using a cesium sulfate additive</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>34</volume><issue>7</issue><spage>571</spage><pages>571-</pages><artnum>571</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Rapid charge injection and extraction are two critical characteristics craved in electron transporting layers (ETLs) for highly efficient planar perovskite solar cells (PSCs). In this research work, a buried interface reinforcing tactics is demonstrated for assembling highly efficient and stable PSCs via depositing Cs
2
SO
4
precursor films on SnO
2
ETLs. It is found that the incorporation of Cs
2
SO
4
onto SnO
2
layers can increase the electronic conductivity and also improve the surface coverage and interface flatness via Sn–O–Cs bonding. Additionally, sulfate bridges (
SO
4
2
-
) engrafted on the surface of tin oxide generate a seamless integration of high-quality perovskite absorber on ETL that expedite comprehensive transport kinetics in the device. The perovskite morphology is considerably modulated to produce enlarged grain sizes and improved crystallinity. Eventually, PSCs fabricated from Cs
2
SO
4
-SnO
2
composite electrodes display power conversion efficiencies up to 20.93% with high ambient stability and small hysteresis. Under ambient conditions (25–30 °C, 50–65% relative humidity), the device retains 70% of the initial efficiency after degradation testing for 350 h.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-10008-6</doi><orcidid>https://orcid.org/0000-0001-5283-3918</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2023-03, Vol.34 (7), p.571, Article 571 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2778133325 |
source | SpringerNature Journals |
subjects | Cesium Characterization and Evaluation of Materials Charge injection Chemistry and Materials Science Electron transport Energy conversion efficiency Grain size Materials Science Optical and Electronic Materials Perovskites Photovoltaic cells Relative humidity Solar cells Stability Tactics Tin Tin dioxide Tin oxides |
title | Reinforcing the efficiency and stability of perovskite solar cells using a cesium sulfate additive |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcing%20the%20efficiency%20and%20stability%20of%20perovskite%20solar%20cells%20using%20a%20cesium%20sulfate%20additive&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Hua,%20Yikun&rft.date=2023-03-01&rft.volume=34&rft.issue=7&rft.spage=571&rft.pages=571-&rft.artnum=571&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-10008-6&rft_dat=%3Cproquest_cross%3E2778133325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778133325&rft_id=info:pmid/&rfr_iscdi=true |