Multi resource allocation with partial preferences

We provide efficient, fair, and non-manipulable mechanisms for the multi-type resource allocation problems (MTRAs) and multiple assignment problems where agents have partial preferences over bundles consisting of multiple divisible items. We uncover a natural reduction from multiple assignment probl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2023-01, Vol.314, p.103824, Article 103824
Hauptverfasser: Wang, Haibin, Sikdar, Sujoy, Guo, Xiaoxi, Xia, Lirong, Cao, Yongzhi, Wang, Hanpin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103824
container_title Artificial intelligence
container_volume 314
creator Wang, Haibin
Sikdar, Sujoy
Guo, Xiaoxi
Xia, Lirong
Cao, Yongzhi
Wang, Hanpin
description We provide efficient, fair, and non-manipulable mechanisms for the multi-type resource allocation problems (MTRAs) and multiple assignment problems where agents have partial preferences over bundles consisting of multiple divisible items. We uncover a natural reduction from multiple assignment problems to MTRAs, which preserves the properties of MTRA mechanisms. We extend the well-known random priority (RP) and probabilistic serial (PS) mechanisms to MTRAs with partial preferences as multi-type PS (MPS) and multi-type RP (MRP) and propose a new mechanism, multi-type general dictatorship (MGD), which combines the ideas of MPS and MRP. We show that for the unrestricted domain of partial order preferences, unfortunately, no mechanism satisfies both sd-efficiency and sd-envy-freeness, even as they each satisfy different weaker notions of the desirable properties of efficiency, fairness, and non-manipulability we consider. Notwithstanding this impossibility result, our main message is positive: When agents' preferences are represented by acyclic CP-nets, MRP satisfies ex-post-efficiency, sd-strategyproofness, and upper invariance, while MPS satisfies sd-efficiency, sd-envy-freeness, ordinal fairness, and upper invariance, recovering the properties of RP and PS; the MGD satisfies sd-efficiency, equal treatment of equals, and decomposability under the unrestricted domain of partial preferences. We introduce a natural domain of bundle net preferences, which generalizes previously studied domain restrictions of partial preferences for multiple assignment problems and is incomparable to the domain of acyclic CP-nets. We show that MRP and MPS satisfy all properties of the RP and PS under bundle net preferences as well.
doi_str_mv 10.1016/j.artint.2022.103824
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777767164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370222001643</els_id><sourcerecordid>2777767164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-fc76c129dcb92816357a32b66c0b6e76483d70ea92039e5e4e9d853e8b726be13</originalsourceid><addsrcrecordid>eNp9UE1LxTAQDKJgffoPPBQ895ls2qS5CPLwC5540XNI0y2m1LYmeYr_3pR6di_LLrOzM0PIJaNbRpm47rfGRzfGLVCAtOI1lEckY7WEQipgxySjlJYFlxROyVkIfRq5Uiwj8HwYoss9hungLeZmGCZropvG_NvF93xemM2Qzx479DhaDOfkpDNDwIu_viFv93evu8di__LwtLvdF5aDikVnpbAMVGsbBTUTvJKGQyOEpY1AKcqat5KiUZCkYIUlqrauONaNBNEg4xtytfLOfvo8YIi6TxrH9FKDTCUkE2VClSvK-imEpFLP3n0Y_6MZ1Us6utdrOnpJR6_ppLOb9QyTgy-HXgfrFnut82ijbif3P8Evn7RupQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777767164</pqid></control><display><type>article</type><title>Multi resource allocation with partial preferences</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Haibin ; Sikdar, Sujoy ; Guo, Xiaoxi ; Xia, Lirong ; Cao, Yongzhi ; Wang, Hanpin</creator><creatorcontrib>Wang, Haibin ; Sikdar, Sujoy ; Guo, Xiaoxi ; Xia, Lirong ; Cao, Yongzhi ; Wang, Hanpin</creatorcontrib><description>We provide efficient, fair, and non-manipulable mechanisms for the multi-type resource allocation problems (MTRAs) and multiple assignment problems where agents have partial preferences over bundles consisting of multiple divisible items. We uncover a natural reduction from multiple assignment problems to MTRAs, which preserves the properties of MTRA mechanisms. We extend the well-known random priority (RP) and probabilistic serial (PS) mechanisms to MTRAs with partial preferences as multi-type PS (MPS) and multi-type RP (MRP) and propose a new mechanism, multi-type general dictatorship (MGD), which combines the ideas of MPS and MRP. We show that for the unrestricted domain of partial order preferences, unfortunately, no mechanism satisfies both sd-efficiency and sd-envy-freeness, even as they each satisfy different weaker notions of the desirable properties of efficiency, fairness, and non-manipulability we consider. Notwithstanding this impossibility result, our main message is positive: When agents' preferences are represented by acyclic CP-nets, MRP satisfies ex-post-efficiency, sd-strategyproofness, and upper invariance, while MPS satisfies sd-efficiency, sd-envy-freeness, ordinal fairness, and upper invariance, recovering the properties of RP and PS; the MGD satisfies sd-efficiency, equal treatment of equals, and decomposability under the unrestricted domain of partial preferences. We introduce a natural domain of bundle net preferences, which generalizes previously studied domain restrictions of partial preferences for multiple assignment problems and is incomparable to the domain of acyclic CP-nets. We show that MRP and MPS satisfy all properties of the RP and PS under bundle net preferences as well.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2022.103824</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational social choice ; Domains ; Efficiency ; Invariance ; Material requirements planning ; Multi resource allocation ; Partial preference ; Probabilistic serial ; Random priority ; Resource allocation</subject><ispartof>Artificial intelligence, 2023-01, Vol.314, p.103824, Article 103824</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-fc76c129dcb92816357a32b66c0b6e76483d70ea92039e5e4e9d853e8b726be13</cites><orcidid>0000-0002-9800-6691 ; 0000-0001-9517-7332 ; 0000-0003-4742-812X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artint.2022.103824$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Haibin</creatorcontrib><creatorcontrib>Sikdar, Sujoy</creatorcontrib><creatorcontrib>Guo, Xiaoxi</creatorcontrib><creatorcontrib>Xia, Lirong</creatorcontrib><creatorcontrib>Cao, Yongzhi</creatorcontrib><creatorcontrib>Wang, Hanpin</creatorcontrib><title>Multi resource allocation with partial preferences</title><title>Artificial intelligence</title><description>We provide efficient, fair, and non-manipulable mechanisms for the multi-type resource allocation problems (MTRAs) and multiple assignment problems where agents have partial preferences over bundles consisting of multiple divisible items. We uncover a natural reduction from multiple assignment problems to MTRAs, which preserves the properties of MTRA mechanisms. We extend the well-known random priority (RP) and probabilistic serial (PS) mechanisms to MTRAs with partial preferences as multi-type PS (MPS) and multi-type RP (MRP) and propose a new mechanism, multi-type general dictatorship (MGD), which combines the ideas of MPS and MRP. We show that for the unrestricted domain of partial order preferences, unfortunately, no mechanism satisfies both sd-efficiency and sd-envy-freeness, even as they each satisfy different weaker notions of the desirable properties of efficiency, fairness, and non-manipulability we consider. Notwithstanding this impossibility result, our main message is positive: When agents' preferences are represented by acyclic CP-nets, MRP satisfies ex-post-efficiency, sd-strategyproofness, and upper invariance, while MPS satisfies sd-efficiency, sd-envy-freeness, ordinal fairness, and upper invariance, recovering the properties of RP and PS; the MGD satisfies sd-efficiency, equal treatment of equals, and decomposability under the unrestricted domain of partial preferences. We introduce a natural domain of bundle net preferences, which generalizes previously studied domain restrictions of partial preferences for multiple assignment problems and is incomparable to the domain of acyclic CP-nets. We show that MRP and MPS satisfy all properties of the RP and PS under bundle net preferences as well.</description><subject>Computational social choice</subject><subject>Domains</subject><subject>Efficiency</subject><subject>Invariance</subject><subject>Material requirements planning</subject><subject>Multi resource allocation</subject><subject>Partial preference</subject><subject>Probabilistic serial</subject><subject>Random priority</subject><subject>Resource allocation</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxTAQDKJgffoPPBQ895ls2qS5CPLwC5540XNI0y2m1LYmeYr_3pR6di_LLrOzM0PIJaNbRpm47rfGRzfGLVCAtOI1lEckY7WEQipgxySjlJYFlxROyVkIfRq5Uiwj8HwYoss9hungLeZmGCZropvG_NvF93xemM2Qzx479DhaDOfkpDNDwIu_viFv93evu8di__LwtLvdF5aDikVnpbAMVGsbBTUTvJKGQyOEpY1AKcqat5KiUZCkYIUlqrauONaNBNEg4xtytfLOfvo8YIi6TxrH9FKDTCUkE2VClSvK-imEpFLP3n0Y_6MZ1Us6utdrOnpJR6_ppLOb9QyTgy-HXgfrFnut82ijbif3P8Evn7RupQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Wang, Haibin</creator><creator>Sikdar, Sujoy</creator><creator>Guo, Xiaoxi</creator><creator>Xia, Lirong</creator><creator>Cao, Yongzhi</creator><creator>Wang, Hanpin</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9800-6691</orcidid><orcidid>https://orcid.org/0000-0001-9517-7332</orcidid><orcidid>https://orcid.org/0000-0003-4742-812X</orcidid></search><sort><creationdate>202301</creationdate><title>Multi resource allocation with partial preferences</title><author>Wang, Haibin ; Sikdar, Sujoy ; Guo, Xiaoxi ; Xia, Lirong ; Cao, Yongzhi ; Wang, Hanpin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-fc76c129dcb92816357a32b66c0b6e76483d70ea92039e5e4e9d853e8b726be13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational social choice</topic><topic>Domains</topic><topic>Efficiency</topic><topic>Invariance</topic><topic>Material requirements planning</topic><topic>Multi resource allocation</topic><topic>Partial preference</topic><topic>Probabilistic serial</topic><topic>Random priority</topic><topic>Resource allocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haibin</creatorcontrib><creatorcontrib>Sikdar, Sujoy</creatorcontrib><creatorcontrib>Guo, Xiaoxi</creatorcontrib><creatorcontrib>Xia, Lirong</creatorcontrib><creatorcontrib>Cao, Yongzhi</creatorcontrib><creatorcontrib>Wang, Hanpin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haibin</au><au>Sikdar, Sujoy</au><au>Guo, Xiaoxi</au><au>Xia, Lirong</au><au>Cao, Yongzhi</au><au>Wang, Hanpin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi resource allocation with partial preferences</atitle><jtitle>Artificial intelligence</jtitle><date>2023-01</date><risdate>2023</risdate><volume>314</volume><spage>103824</spage><pages>103824-</pages><artnum>103824</artnum><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>We provide efficient, fair, and non-manipulable mechanisms for the multi-type resource allocation problems (MTRAs) and multiple assignment problems where agents have partial preferences over bundles consisting of multiple divisible items. We uncover a natural reduction from multiple assignment problems to MTRAs, which preserves the properties of MTRA mechanisms. We extend the well-known random priority (RP) and probabilistic serial (PS) mechanisms to MTRAs with partial preferences as multi-type PS (MPS) and multi-type RP (MRP) and propose a new mechanism, multi-type general dictatorship (MGD), which combines the ideas of MPS and MRP. We show that for the unrestricted domain of partial order preferences, unfortunately, no mechanism satisfies both sd-efficiency and sd-envy-freeness, even as they each satisfy different weaker notions of the desirable properties of efficiency, fairness, and non-manipulability we consider. Notwithstanding this impossibility result, our main message is positive: When agents' preferences are represented by acyclic CP-nets, MRP satisfies ex-post-efficiency, sd-strategyproofness, and upper invariance, while MPS satisfies sd-efficiency, sd-envy-freeness, ordinal fairness, and upper invariance, recovering the properties of RP and PS; the MGD satisfies sd-efficiency, equal treatment of equals, and decomposability under the unrestricted domain of partial preferences. We introduce a natural domain of bundle net preferences, which generalizes previously studied domain restrictions of partial preferences for multiple assignment problems and is incomparable to the domain of acyclic CP-nets. We show that MRP and MPS satisfy all properties of the RP and PS under bundle net preferences as well.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2022.103824</doi><orcidid>https://orcid.org/0000-0002-9800-6691</orcidid><orcidid>https://orcid.org/0000-0001-9517-7332</orcidid><orcidid>https://orcid.org/0000-0003-4742-812X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 2023-01, Vol.314, p.103824, Article 103824
issn 0004-3702
1872-7921
language eng
recordid cdi_proquest_journals_2777767164
source Access via ScienceDirect (Elsevier)
subjects Computational social choice
Domains
Efficiency
Invariance
Material requirements planning
Multi resource allocation
Partial preference
Probabilistic serial
Random priority
Resource allocation
title Multi resource allocation with partial preferences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%20resource%20allocation%20with%20partial%20preferences&rft.jtitle=Artificial%20intelligence&rft.au=Wang,%20Haibin&rft.date=2023-01&rft.volume=314&rft.spage=103824&rft.pages=103824-&rft.artnum=103824&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2022.103824&rft_dat=%3Cproquest_cross%3E2777767164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777767164&rft_id=info:pmid/&rft_els_id=S0004370222001643&rfr_iscdi=true