A Computational Experiment Introducing Undergraduates to Geometry Optimizations, Vibrational Frequencies, and Potential Energy Surfaces
In this article, we describe a fully computational laboratory exercise that results in an increase of students’ understanding of what quantum chemical geometry optimization calculations are doing to find minimum energy structures. This laboratory exercise was conducted several times over multiple ye...
Gespeichert in:
Veröffentlicht in: | Journal of chemical education 2023-02, Vol.100 (2), p.921-927 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 927 |
---|---|
container_issue | 2 |
container_start_page | 921 |
container_title | Journal of chemical education |
container_volume | 100 |
creator | Hanson, Matthew D. Miller, Daniel P. Kondeti, Cholavardhan Brown, Adam Zurek, Eva Simpson, Scott |
description | In this article, we describe a fully computational laboratory exercise that results in an increase of students’ understanding of what quantum chemical geometry optimization calculations are doing to find minimum energy structures. This laboratory exercise was conducted several times over multiple years at a small private undergraduate institution, St. Bonaventure University. Through this experiment, physical chemistry undergraduate students are exposed to chemical problems for which computations provide a necessary supplement to chemical intuition, thus cementing the importance of computational work in contemporary chemistry. Students apply their understanding of geometry optimizations to problems of complex 3-D molecular structures that stretch their intuition, including the geometries and isomers of closo-carboranes and of the hexamer of the cocatalyst methylaluminoxane. Students are also exposed to vibrational frequency calculations as a diagnostic tool for determining whether structures represent energetic minima or transition states, and they are exposed to the vibrational zero-point energy correction. |
doi_str_mv | 10.1021/acs.jchemed.2c01129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777765610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777765610</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-d8a61ebb503d4df2a5923a3012112f767b99ffc18f69582cdcbe1e6bd2f7b8563</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhRujiYg-gZsmbh1oO8zfkhBAEhJMFLeTTnuLQ5h2bDuJ-AK-tuVvazd3ce75es9B6JGSASWMDrlwg634hAbkgAlCKSuuUI8WcR7RmOXXqEfCWlQk-egW3Tm3JYSypMh76HeMJ6ZpO899bTTf4el3C7ZuQHu80N4a2Ylab_BaS7Aby2XHPTjsDZ6DacDbPV61vm7qnyPAPeOPurIX2MzCVwda1BAEriV-NT6Q68M_OvD2-K2zigtw9-hG8Z2Dh_Pso_Vs-j55iZar-WIyXkacjTIfyZynFKoqIbEcScV4UrCYxyFNyKyyNKuKQilBc5WGsExIUQGFtJJBrPIkjfvo6cRtrQmnOV9uTWfDra5kWXhpklIStuLTlrDGOQuqbEMn3O5LSspD42VovDw3Xp4bD67hyXUUL9j_HH9Pf4qb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777765610</pqid></control><display><type>article</type><title>A Computational Experiment Introducing Undergraduates to Geometry Optimizations, Vibrational Frequencies, and Potential Energy Surfaces</title><source>ACS Publications</source><creator>Hanson, Matthew D. ; Miller, Daniel P. ; Kondeti, Cholavardhan ; Brown, Adam ; Zurek, Eva ; Simpson, Scott</creator><creatorcontrib>Hanson, Matthew D. ; Miller, Daniel P. ; Kondeti, Cholavardhan ; Brown, Adam ; Zurek, Eva ; Simpson, Scott</creatorcontrib><description>In this article, we describe a fully computational laboratory exercise that results in an increase of students’ understanding of what quantum chemical geometry optimization calculations are doing to find minimum energy structures. This laboratory exercise was conducted several times over multiple years at a small private undergraduate institution, St. Bonaventure University. Through this experiment, physical chemistry undergraduate students are exposed to chemical problems for which computations provide a necessary supplement to chemical intuition, thus cementing the importance of computational work in contemporary chemistry. Students apply their understanding of geometry optimizations to problems of complex 3-D molecular structures that stretch their intuition, including the geometries and isomers of closo-carboranes and of the hexamer of the cocatalyst methylaluminoxane. Students are also exposed to vibrational frequency calculations as a diagnostic tool for determining whether structures represent energetic minima or transition states, and they are exposed to the vibrational zero-point energy correction.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/acs.jchemed.2c01129</identifier><language>eng</language><publisher>Easton: American Chemical Society and Division of Chemical Education, Inc</publisher><subject>Cementing ; College students ; Exposure ; Mathematical analysis ; Molecular structure ; Optimization ; Physical chemistry ; Potential energy ; Quantum chemistry ; Science activities ; Students ; Undergraduate study ; Zero point energy</subject><ispartof>Journal of chemical education, 2023-02, Vol.100 (2), p.921-927</ispartof><rights>2023 American Chemical Society and Division of Chemical Education, Inc.</rights><rights>Copyright American Chemical Society Feb 14, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a247t-d8a61ebb503d4df2a5923a3012112f767b99ffc18f69582cdcbe1e6bd2f7b8563</citedby><cites>FETCH-LOGICAL-a247t-d8a61ebb503d4df2a5923a3012112f767b99ffc18f69582cdcbe1e6bd2f7b8563</cites><orcidid>0000-0003-0738-867X ; 0000-0003-1507-2667 ; 0000-0001-8093-1814 ; 0000-0001-8463-0672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jchemed.2c01129$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jchemed.2c01129$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Hanson, Matthew D.</creatorcontrib><creatorcontrib>Miller, Daniel P.</creatorcontrib><creatorcontrib>Kondeti, Cholavardhan</creatorcontrib><creatorcontrib>Brown, Adam</creatorcontrib><creatorcontrib>Zurek, Eva</creatorcontrib><creatorcontrib>Simpson, Scott</creatorcontrib><title>A Computational Experiment Introducing Undergraduates to Geometry Optimizations, Vibrational Frequencies, and Potential Energy Surfaces</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>In this article, we describe a fully computational laboratory exercise that results in an increase of students’ understanding of what quantum chemical geometry optimization calculations are doing to find minimum energy structures. This laboratory exercise was conducted several times over multiple years at a small private undergraduate institution, St. Bonaventure University. Through this experiment, physical chemistry undergraduate students are exposed to chemical problems for which computations provide a necessary supplement to chemical intuition, thus cementing the importance of computational work in contemporary chemistry. Students apply their understanding of geometry optimizations to problems of complex 3-D molecular structures that stretch their intuition, including the geometries and isomers of closo-carboranes and of the hexamer of the cocatalyst methylaluminoxane. Students are also exposed to vibrational frequency calculations as a diagnostic tool for determining whether structures represent energetic minima or transition states, and they are exposed to the vibrational zero-point energy correction.</description><subject>Cementing</subject><subject>College students</subject><subject>Exposure</subject><subject>Mathematical analysis</subject><subject>Molecular structure</subject><subject>Optimization</subject><subject>Physical chemistry</subject><subject>Potential energy</subject><subject>Quantum chemistry</subject><subject>Science activities</subject><subject>Students</subject><subject>Undergraduate study</subject><subject>Zero point energy</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAjEUhRujiYg-gZsmbh1oO8zfkhBAEhJMFLeTTnuLQ5h2bDuJ-AK-tuVvazd3ce75es9B6JGSASWMDrlwg634hAbkgAlCKSuuUI8WcR7RmOXXqEfCWlQk-egW3Tm3JYSypMh76HeMJ6ZpO899bTTf4el3C7ZuQHu80N4a2Ylab_BaS7Aby2XHPTjsDZ6DacDbPV61vm7qnyPAPeOPurIX2MzCVwda1BAEriV-NT6Q68M_OvD2-K2zigtw9-hG8Z2Dh_Pso_Vs-j55iZar-WIyXkacjTIfyZynFKoqIbEcScV4UrCYxyFNyKyyNKuKQilBc5WGsExIUQGFtJJBrPIkjfvo6cRtrQmnOV9uTWfDra5kWXhpklIStuLTlrDGOQuqbEMn3O5LSspD42VovDw3Xp4bD67hyXUUL9j_HH9Pf4qb</recordid><startdate>20230214</startdate><enddate>20230214</enddate><creator>Hanson, Matthew D.</creator><creator>Miller, Daniel P.</creator><creator>Kondeti, Cholavardhan</creator><creator>Brown, Adam</creator><creator>Zurek, Eva</creator><creator>Simpson, Scott</creator><general>American Chemical Society and Division of Chemical Education, Inc</general><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-0738-867X</orcidid><orcidid>https://orcid.org/0000-0003-1507-2667</orcidid><orcidid>https://orcid.org/0000-0001-8093-1814</orcidid><orcidid>https://orcid.org/0000-0001-8463-0672</orcidid></search><sort><creationdate>20230214</creationdate><title>A Computational Experiment Introducing Undergraduates to Geometry Optimizations, Vibrational Frequencies, and Potential Energy Surfaces</title><author>Hanson, Matthew D. ; Miller, Daniel P. ; Kondeti, Cholavardhan ; Brown, Adam ; Zurek, Eva ; Simpson, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-d8a61ebb503d4df2a5923a3012112f767b99ffc18f69582cdcbe1e6bd2f7b8563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cementing</topic><topic>College students</topic><topic>Exposure</topic><topic>Mathematical analysis</topic><topic>Molecular structure</topic><topic>Optimization</topic><topic>Physical chemistry</topic><topic>Potential energy</topic><topic>Quantum chemistry</topic><topic>Science activities</topic><topic>Students</topic><topic>Undergraduate study</topic><topic>Zero point energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanson, Matthew D.</creatorcontrib><creatorcontrib>Miller, Daniel P.</creatorcontrib><creatorcontrib>Kondeti, Cholavardhan</creatorcontrib><creatorcontrib>Brown, Adam</creatorcontrib><creatorcontrib>Zurek, Eva</creatorcontrib><creatorcontrib>Simpson, Scott</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanson, Matthew D.</au><au>Miller, Daniel P.</au><au>Kondeti, Cholavardhan</au><au>Brown, Adam</au><au>Zurek, Eva</au><au>Simpson, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Experiment Introducing Undergraduates to Geometry Optimizations, Vibrational Frequencies, and Potential Energy Surfaces</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2023-02-14</date><risdate>2023</risdate><volume>100</volume><issue>2</issue><spage>921</spage><epage>927</epage><pages>921-927</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><abstract>In this article, we describe a fully computational laboratory exercise that results in an increase of students’ understanding of what quantum chemical geometry optimization calculations are doing to find minimum energy structures. This laboratory exercise was conducted several times over multiple years at a small private undergraduate institution, St. Bonaventure University. Through this experiment, physical chemistry undergraduate students are exposed to chemical problems for which computations provide a necessary supplement to chemical intuition, thus cementing the importance of computational work in contemporary chemistry. Students apply their understanding of geometry optimizations to problems of complex 3-D molecular structures that stretch their intuition, including the geometries and isomers of closo-carboranes and of the hexamer of the cocatalyst methylaluminoxane. Students are also exposed to vibrational frequency calculations as a diagnostic tool for determining whether structures represent energetic minima or transition states, and they are exposed to the vibrational zero-point energy correction.</abstract><cop>Easton</cop><pub>American Chemical Society and Division of Chemical Education, Inc</pub><doi>10.1021/acs.jchemed.2c01129</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0738-867X</orcidid><orcidid>https://orcid.org/0000-0003-1507-2667</orcidid><orcidid>https://orcid.org/0000-0001-8093-1814</orcidid><orcidid>https://orcid.org/0000-0001-8463-0672</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9584 |
ispartof | Journal of chemical education, 2023-02, Vol.100 (2), p.921-927 |
issn | 0021-9584 1938-1328 |
language | eng |
recordid | cdi_proquest_journals_2777765610 |
source | ACS Publications |
subjects | Cementing College students Exposure Mathematical analysis Molecular structure Optimization Physical chemistry Potential energy Quantum chemistry Science activities Students Undergraduate study Zero point energy |
title | A Computational Experiment Introducing Undergraduates to Geometry Optimizations, Vibrational Frequencies, and Potential Energy Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Experiment%20Introducing%20Undergraduates%20to%20Geometry%20Optimizations,%20Vibrational%20Frequencies,%20and%20Potential%20Energy%20Surfaces&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Hanson,%20Matthew%20D.&rft.date=2023-02-14&rft.volume=100&rft.issue=2&rft.spage=921&rft.epage=927&rft.pages=921-927&rft.issn=0021-9584&rft.eissn=1938-1328&rft_id=info:doi/10.1021/acs.jchemed.2c01129&rft_dat=%3Cproquest_cross%3E2777765610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777765610&rft_id=info:pmid/&rfr_iscdi=true |