A Computational Experiment Introducing Undergraduates to Geometry Optimizations, Vibrational Frequencies, and Potential Energy Surfaces

In this article, we describe a fully computational laboratory exercise that results in an increase of students’ understanding of what quantum chemical geometry optimization calculations are doing to find minimum energy structures. This laboratory exercise was conducted several times over multiple ye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical education 2023-02, Vol.100 (2), p.921-927
Hauptverfasser: Hanson, Matthew D., Miller, Daniel P., Kondeti, Cholavardhan, Brown, Adam, Zurek, Eva, Simpson, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 927
container_issue 2
container_start_page 921
container_title Journal of chemical education
container_volume 100
creator Hanson, Matthew D.
Miller, Daniel P.
Kondeti, Cholavardhan
Brown, Adam
Zurek, Eva
Simpson, Scott
description In this article, we describe a fully computational laboratory exercise that results in an increase of students’ understanding of what quantum chemical geometry optimization calculations are doing to find minimum energy structures. This laboratory exercise was conducted several times over multiple years at a small private undergraduate institution, St. Bonaventure University. Through this experiment, physical chemistry undergraduate students are exposed to chemical problems for which computations provide a necessary supplement to chemical intuition, thus cementing the importance of computational work in contemporary chemistry. Students apply their understanding of geometry optimizations to problems of complex 3-D molecular structures that stretch their intuition, including the geometries and isomers of closo-carboranes and of the hexamer of the cocatalyst methylaluminoxane. Students are also exposed to vibrational frequency calculations as a diagnostic tool for determining whether structures represent energetic minima or transition states, and they are exposed to the vibrational zero-point energy correction.
doi_str_mv 10.1021/acs.jchemed.2c01129
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777765610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777765610</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-d8a61ebb503d4df2a5923a3012112f767b99ffc18f69582cdcbe1e6bd2f7b8563</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhRujiYg-gZsmbh1oO8zfkhBAEhJMFLeTTnuLQ5h2bDuJ-AK-tuVvazd3ce75es9B6JGSASWMDrlwg634hAbkgAlCKSuuUI8WcR7RmOXXqEfCWlQk-egW3Tm3JYSypMh76HeMJ6ZpO899bTTf4el3C7ZuQHu80N4a2Ylab_BaS7Aby2XHPTjsDZ6DacDbPV61vm7qnyPAPeOPurIX2MzCVwda1BAEriV-NT6Q68M_OvD2-K2zigtw9-hG8Z2Dh_Pso_Vs-j55iZar-WIyXkacjTIfyZynFKoqIbEcScV4UrCYxyFNyKyyNKuKQilBc5WGsExIUQGFtJJBrPIkjfvo6cRtrQmnOV9uTWfDra5kWXhpklIStuLTlrDGOQuqbEMn3O5LSspD42VovDw3Xp4bD67hyXUUL9j_HH9Pf4qb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777765610</pqid></control><display><type>article</type><title>A Computational Experiment Introducing Undergraduates to Geometry Optimizations, Vibrational Frequencies, and Potential Energy Surfaces</title><source>ACS Publications</source><creator>Hanson, Matthew D. ; Miller, Daniel P. ; Kondeti, Cholavardhan ; Brown, Adam ; Zurek, Eva ; Simpson, Scott</creator><creatorcontrib>Hanson, Matthew D. ; Miller, Daniel P. ; Kondeti, Cholavardhan ; Brown, Adam ; Zurek, Eva ; Simpson, Scott</creatorcontrib><description>In this article, we describe a fully computational laboratory exercise that results in an increase of students’ understanding of what quantum chemical geometry optimization calculations are doing to find minimum energy structures. This laboratory exercise was conducted several times over multiple years at a small private undergraduate institution, St. Bonaventure University. Through this experiment, physical chemistry undergraduate students are exposed to chemical problems for which computations provide a necessary supplement to chemical intuition, thus cementing the importance of computational work in contemporary chemistry. Students apply their understanding of geometry optimizations to problems of complex 3-D molecular structures that stretch their intuition, including the geometries and isomers of closo-carboranes and of the hexamer of the cocatalyst methylaluminoxane. Students are also exposed to vibrational frequency calculations as a diagnostic tool for determining whether structures represent energetic minima or transition states, and they are exposed to the vibrational zero-point energy correction.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/acs.jchemed.2c01129</identifier><language>eng</language><publisher>Easton: American Chemical Society and Division of Chemical Education, Inc</publisher><subject>Cementing ; College students ; Exposure ; Mathematical analysis ; Molecular structure ; Optimization ; Physical chemistry ; Potential energy ; Quantum chemistry ; Science activities ; Students ; Undergraduate study ; Zero point energy</subject><ispartof>Journal of chemical education, 2023-02, Vol.100 (2), p.921-927</ispartof><rights>2023 American Chemical Society and Division of Chemical Education, Inc.</rights><rights>Copyright American Chemical Society Feb 14, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a247t-d8a61ebb503d4df2a5923a3012112f767b99ffc18f69582cdcbe1e6bd2f7b8563</citedby><cites>FETCH-LOGICAL-a247t-d8a61ebb503d4df2a5923a3012112f767b99ffc18f69582cdcbe1e6bd2f7b8563</cites><orcidid>0000-0003-0738-867X ; 0000-0003-1507-2667 ; 0000-0001-8093-1814 ; 0000-0001-8463-0672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jchemed.2c01129$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jchemed.2c01129$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Hanson, Matthew D.</creatorcontrib><creatorcontrib>Miller, Daniel P.</creatorcontrib><creatorcontrib>Kondeti, Cholavardhan</creatorcontrib><creatorcontrib>Brown, Adam</creatorcontrib><creatorcontrib>Zurek, Eva</creatorcontrib><creatorcontrib>Simpson, Scott</creatorcontrib><title>A Computational Experiment Introducing Undergraduates to Geometry Optimizations, Vibrational Frequencies, and Potential Energy Surfaces</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>In this article, we describe a fully computational laboratory exercise that results in an increase of students’ understanding of what quantum chemical geometry optimization calculations are doing to find minimum energy structures. This laboratory exercise was conducted several times over multiple years at a small private undergraduate institution, St. Bonaventure University. Through this experiment, physical chemistry undergraduate students are exposed to chemical problems for which computations provide a necessary supplement to chemical intuition, thus cementing the importance of computational work in contemporary chemistry. Students apply their understanding of geometry optimizations to problems of complex 3-D molecular structures that stretch their intuition, including the geometries and isomers of closo-carboranes and of the hexamer of the cocatalyst methylaluminoxane. Students are also exposed to vibrational frequency calculations as a diagnostic tool for determining whether structures represent energetic minima or transition states, and they are exposed to the vibrational zero-point energy correction.</description><subject>Cementing</subject><subject>College students</subject><subject>Exposure</subject><subject>Mathematical analysis</subject><subject>Molecular structure</subject><subject>Optimization</subject><subject>Physical chemistry</subject><subject>Potential energy</subject><subject>Quantum chemistry</subject><subject>Science activities</subject><subject>Students</subject><subject>Undergraduate study</subject><subject>Zero point energy</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAjEUhRujiYg-gZsmbh1oO8zfkhBAEhJMFLeTTnuLQ5h2bDuJ-AK-tuVvazd3ce75es9B6JGSASWMDrlwg634hAbkgAlCKSuuUI8WcR7RmOXXqEfCWlQk-egW3Tm3JYSypMh76HeMJ6ZpO899bTTf4el3C7ZuQHu80N4a2Ylab_BaS7Aby2XHPTjsDZ6DacDbPV61vm7qnyPAPeOPurIX2MzCVwda1BAEriV-NT6Q68M_OvD2-K2zigtw9-hG8Z2Dh_Pso_Vs-j55iZar-WIyXkacjTIfyZynFKoqIbEcScV4UrCYxyFNyKyyNKuKQilBc5WGsExIUQGFtJJBrPIkjfvo6cRtrQmnOV9uTWfDra5kWXhpklIStuLTlrDGOQuqbEMn3O5LSspD42VovDw3Xp4bD67hyXUUL9j_HH9Pf4qb</recordid><startdate>20230214</startdate><enddate>20230214</enddate><creator>Hanson, Matthew D.</creator><creator>Miller, Daniel P.</creator><creator>Kondeti, Cholavardhan</creator><creator>Brown, Adam</creator><creator>Zurek, Eva</creator><creator>Simpson, Scott</creator><general>American Chemical Society and Division of Chemical Education, Inc</general><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-0738-867X</orcidid><orcidid>https://orcid.org/0000-0003-1507-2667</orcidid><orcidid>https://orcid.org/0000-0001-8093-1814</orcidid><orcidid>https://orcid.org/0000-0001-8463-0672</orcidid></search><sort><creationdate>20230214</creationdate><title>A Computational Experiment Introducing Undergraduates to Geometry Optimizations, Vibrational Frequencies, and Potential Energy Surfaces</title><author>Hanson, Matthew D. ; Miller, Daniel P. ; Kondeti, Cholavardhan ; Brown, Adam ; Zurek, Eva ; Simpson, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-d8a61ebb503d4df2a5923a3012112f767b99ffc18f69582cdcbe1e6bd2f7b8563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cementing</topic><topic>College students</topic><topic>Exposure</topic><topic>Mathematical analysis</topic><topic>Molecular structure</topic><topic>Optimization</topic><topic>Physical chemistry</topic><topic>Potential energy</topic><topic>Quantum chemistry</topic><topic>Science activities</topic><topic>Students</topic><topic>Undergraduate study</topic><topic>Zero point energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanson, Matthew D.</creatorcontrib><creatorcontrib>Miller, Daniel P.</creatorcontrib><creatorcontrib>Kondeti, Cholavardhan</creatorcontrib><creatorcontrib>Brown, Adam</creatorcontrib><creatorcontrib>Zurek, Eva</creatorcontrib><creatorcontrib>Simpson, Scott</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanson, Matthew D.</au><au>Miller, Daniel P.</au><au>Kondeti, Cholavardhan</au><au>Brown, Adam</au><au>Zurek, Eva</au><au>Simpson, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Experiment Introducing Undergraduates to Geometry Optimizations, Vibrational Frequencies, and Potential Energy Surfaces</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2023-02-14</date><risdate>2023</risdate><volume>100</volume><issue>2</issue><spage>921</spage><epage>927</epage><pages>921-927</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><abstract>In this article, we describe a fully computational laboratory exercise that results in an increase of students’ understanding of what quantum chemical geometry optimization calculations are doing to find minimum energy structures. This laboratory exercise was conducted several times over multiple years at a small private undergraduate institution, St. Bonaventure University. Through this experiment, physical chemistry undergraduate students are exposed to chemical problems for which computations provide a necessary supplement to chemical intuition, thus cementing the importance of computational work in contemporary chemistry. Students apply their understanding of geometry optimizations to problems of complex 3-D molecular structures that stretch their intuition, including the geometries and isomers of closo-carboranes and of the hexamer of the cocatalyst methylaluminoxane. Students are also exposed to vibrational frequency calculations as a diagnostic tool for determining whether structures represent energetic minima or transition states, and they are exposed to the vibrational zero-point energy correction.</abstract><cop>Easton</cop><pub>American Chemical Society and Division of Chemical Education, Inc</pub><doi>10.1021/acs.jchemed.2c01129</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0738-867X</orcidid><orcidid>https://orcid.org/0000-0003-1507-2667</orcidid><orcidid>https://orcid.org/0000-0001-8093-1814</orcidid><orcidid>https://orcid.org/0000-0001-8463-0672</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9584
ispartof Journal of chemical education, 2023-02, Vol.100 (2), p.921-927
issn 0021-9584
1938-1328
language eng
recordid cdi_proquest_journals_2777765610
source ACS Publications
subjects Cementing
College students
Exposure
Mathematical analysis
Molecular structure
Optimization
Physical chemistry
Potential energy
Quantum chemistry
Science activities
Students
Undergraduate study
Zero point energy
title A Computational Experiment Introducing Undergraduates to Geometry Optimizations, Vibrational Frequencies, and Potential Energy Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Experiment%20Introducing%20Undergraduates%20to%20Geometry%20Optimizations,%20Vibrational%20Frequencies,%20and%20Potential%20Energy%20Surfaces&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Hanson,%20Matthew%20D.&rft.date=2023-02-14&rft.volume=100&rft.issue=2&rft.spage=921&rft.epage=927&rft.pages=921-927&rft.issn=0021-9584&rft.eissn=1938-1328&rft_id=info:doi/10.1021/acs.jchemed.2c01129&rft_dat=%3Cproquest_cross%3E2777765610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777765610&rft_id=info:pmid/&rfr_iscdi=true