Multivariate prediction intervals for bagged models

Accurate uncertainty estimates can significantly improve the performance of iterative design of experiments, as in sequential and reinforcement learning. For many such problems in engineering and the physical sciences, the design task depends on multiple correlated model outputs as objectives and/or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2023-03, Vol.4 (1), p.15022
Hauptverfasser: Folie, Brendan, Hutchinson, Maxwell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 15022
container_title Machine learning: science and technology
container_volume 4
creator Folie, Brendan
Hutchinson, Maxwell
description Accurate uncertainty estimates can significantly improve the performance of iterative design of experiments, as in sequential and reinforcement learning. For many such problems in engineering and the physical sciences, the design task depends on multiple correlated model outputs as objectives and/or constraints. To better solve these problems, we propose a recalibrated bootstrap method to generate multivariate prediction intervals for bagged models such as random forest and show that it is well-calibrated. We apply the recalibrated bootstrap to a simulated sequential learning problem with multiple objectives and show that it leads to a marked decrease in the number of iterations required to find a satisfactory candidate. This indicates that the recalibrated bootstrap could be a valuable tool for practitioners using machine learning to optimize systems with multiple competing targets.
doi_str_mv 10.1088/2632-2153/acb9d5
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2777765176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_09d83573f45a43878e0158a4566d5d15</doaj_id><sourcerecordid>2777765176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-f2f661bcc2a9df2fe9757053491c2488546a0aade137fcd81529e1e95a36ac6f3</originalsourceid><addsrcrecordid>eNp9ULtOAzEQtBBIRCE95UkUNBzx4_y4EkU8IgXRQG1t_IgcXeLDd4nE3-NwKFAgtvHuemY8HoQuCb4lWKkpFYyWlHA2BbOsLT9Bo-Pq9Fd_jiZdt8YYU04Yp3iE2POu6cMeUoDeFW1yNpg-xG0Rtr1Le2i6wsdULGG1crbYROua7gKd-XzhJt_nGL093L_OnsrFy-N8drcoDWOkLz31QpClMRRqmwdXSy4xZ1VNDK2U4pUADGAdYdIbqwintSOu5sAEGOHZGM0HXRthrdsUNpA-dISgvxYxrTSkPpjGaVxbxbhkvuJQMSWVw4QrqLgQltv88zG6GrTaFN93ruv1Ou7SNtvXVOYSnEiRUXhAmRS7Ljl_fJVgfUhaH6LUhyj1kHSm3AyUENsfzX_g13_AN002VGmis2tMqW6tZ5-AQIqk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777765176</pqid></control><display><type>article</type><title>Multivariate prediction intervals for bagged models</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Folie, Brendan ; Hutchinson, Maxwell</creator><creatorcontrib>Folie, Brendan ; Hutchinson, Maxwell</creatorcontrib><description>Accurate uncertainty estimates can significantly improve the performance of iterative design of experiments, as in sequential and reinforcement learning. For many such problems in engineering and the physical sciences, the design task depends on multiple correlated model outputs as objectives and/or constraints. To better solve these problems, we propose a recalibrated bootstrap method to generate multivariate prediction intervals for bagged models such as random forest and show that it is well-calibrated. We apply the recalibrated bootstrap to a simulated sequential learning problem with multiple objectives and show that it leads to a marked decrease in the number of iterations required to find a satisfactory candidate. This indicates that the recalibrated bootstrap could be a valuable tool for practitioners using machine learning to optimize systems with multiple competing targets.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/acb9d5</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Constraint modelling ; Intervals ; Iterative methods ; Machine learning ; materials informatics ; Multivariate analysis ; Physical sciences ; random forest ; sequential learning ; Statistical methods ; uncertainty quantification</subject><ispartof>Machine learning: science and technology, 2023-03, Vol.4 (1), p.15022</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c331t-f2f661bcc2a9df2fe9757053491c2488546a0aade137fcd81529e1e95a36ac6f3</cites><orcidid>0000-0002-0844-4111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2632-2153/acb9d5/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2101,27923,27924,38889,53866</link.rule.ids></links><search><creatorcontrib>Folie, Brendan</creatorcontrib><creatorcontrib>Hutchinson, Maxwell</creatorcontrib><title>Multivariate prediction intervals for bagged models</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>Accurate uncertainty estimates can significantly improve the performance of iterative design of experiments, as in sequential and reinforcement learning. For many such problems in engineering and the physical sciences, the design task depends on multiple correlated model outputs as objectives and/or constraints. To better solve these problems, we propose a recalibrated bootstrap method to generate multivariate prediction intervals for bagged models such as random forest and show that it is well-calibrated. We apply the recalibrated bootstrap to a simulated sequential learning problem with multiple objectives and show that it leads to a marked decrease in the number of iterations required to find a satisfactory candidate. This indicates that the recalibrated bootstrap could be a valuable tool for practitioners using machine learning to optimize systems with multiple competing targets.</description><subject>Constraint modelling</subject><subject>Intervals</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>materials informatics</subject><subject>Multivariate analysis</subject><subject>Physical sciences</subject><subject>random forest</subject><subject>sequential learning</subject><subject>Statistical methods</subject><subject>uncertainty quantification</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9ULtOAzEQtBBIRCE95UkUNBzx4_y4EkU8IgXRQG1t_IgcXeLDd4nE3-NwKFAgtvHuemY8HoQuCb4lWKkpFYyWlHA2BbOsLT9Bo-Pq9Fd_jiZdt8YYU04Yp3iE2POu6cMeUoDeFW1yNpg-xG0Rtr1Le2i6wsdULGG1crbYROua7gKd-XzhJt_nGL093L_OnsrFy-N8drcoDWOkLz31QpClMRRqmwdXSy4xZ1VNDK2U4pUADGAdYdIbqwintSOu5sAEGOHZGM0HXRthrdsUNpA-dISgvxYxrTSkPpjGaVxbxbhkvuJQMSWVw4QrqLgQltv88zG6GrTaFN93ruv1Ou7SNtvXVOYSnEiRUXhAmRS7Ljl_fJVgfUhaH6LUhyj1kHSm3AyUENsfzX_g13_AN002VGmis2tMqW6tZ5-AQIqk</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Folie, Brendan</creator><creator>Hutchinson, Maxwell</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0844-4111</orcidid></search><sort><creationdate>20230301</creationdate><title>Multivariate prediction intervals for bagged models</title><author>Folie, Brendan ; Hutchinson, Maxwell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-f2f661bcc2a9df2fe9757053491c2488546a0aade137fcd81529e1e95a36ac6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Constraint modelling</topic><topic>Intervals</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>materials informatics</topic><topic>Multivariate analysis</topic><topic>Physical sciences</topic><topic>random forest</topic><topic>sequential learning</topic><topic>Statistical methods</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Folie, Brendan</creatorcontrib><creatorcontrib>Hutchinson, Maxwell</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Folie, Brendan</au><au>Hutchinson, Maxwell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate prediction intervals for bagged models</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>4</volume><issue>1</issue><spage>15022</spage><pages>15022-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>Accurate uncertainty estimates can significantly improve the performance of iterative design of experiments, as in sequential and reinforcement learning. For many such problems in engineering and the physical sciences, the design task depends on multiple correlated model outputs as objectives and/or constraints. To better solve these problems, we propose a recalibrated bootstrap method to generate multivariate prediction intervals for bagged models such as random forest and show that it is well-calibrated. We apply the recalibrated bootstrap to a simulated sequential learning problem with multiple objectives and show that it leads to a marked decrease in the number of iterations required to find a satisfactory candidate. This indicates that the recalibrated bootstrap could be a valuable tool for practitioners using machine learning to optimize systems with multiple competing targets.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/acb9d5</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-0844-4111</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-2153
ispartof Machine learning: science and technology, 2023-03, Vol.4 (1), p.15022
issn 2632-2153
2632-2153
language eng
recordid cdi_proquest_journals_2777765176
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Constraint modelling
Intervals
Iterative methods
Machine learning
materials informatics
Multivariate analysis
Physical sciences
random forest
sequential learning
Statistical methods
uncertainty quantification
title Multivariate prediction intervals for bagged models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20prediction%20intervals%20for%20bagged%20models&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Folie,%20Brendan&rft.date=2023-03-01&rft.volume=4&rft.issue=1&rft.spage=15022&rft.pages=15022-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/acb9d5&rft_dat=%3Cproquest_iop_j%3E2777765176%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777765176&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_09d83573f45a43878e0158a4566d5d15&rfr_iscdi=true