Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids

This work presents concepts and algorithms for the simulation of dynamic fractures with a Lattice Boltzmann method (LBM) for linear elastic solids. This LBM has been presented previously and solves the wave equation, which is interpreted as the governing equation for antiplane shear deformation. Bes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive of applied mechanics (1991) 2023-03, Vol.93 (3), p.933-946
Hauptverfasser: Müller, Henning, Touil, Ali, Schlüter, Alexander, Müller, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 946
container_issue 3
container_start_page 933
container_title Archive of applied mechanics (1991)
container_volume 93
creator Müller, Henning
Touil, Ali
Schlüter, Alexander
Müller, Ralf
description This work presents concepts and algorithms for the simulation of dynamic fractures with a Lattice Boltzmann method (LBM) for linear elastic solids. This LBM has been presented previously and solves the wave equation, which is interpreted as the governing equation for antiplane shear deformation. Besides the steady growth of a crack at a prescribed crack velocity, a fracture criterion based on stress intensity factors has been implemented. This is the first time that crack propagation with a mechanically relevant criterion is regarded in the context of LBMs. Numerical results are examined to validate the proposed method. The concepts of crack propagation introduced here are not limited to mode III cracks or the simplified deformation assumption of antiplane shear. By introducing a rather simple processing step into the existing LBM at the level of individual lattice sites, the overall performance of the LBM is maintained. Our findings underline the validity of the LBM as a numerical tool to simulate solids in general as well as dynamic fractures in particular.
doi_str_mv 10.1007/s00419-022-02306-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777757190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777757190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e83d708f475d940c3d3b23aefff7ce43e4aa073e0c995d324bfd61bab5d00bc33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9VJJ203R12_Cgt70XNI87F23TZr0j3UX2-0gjcHhmHgfd8ZHkIuGVwzgOomAnAmMsjz1AhlNh6RGeOY1nLBjskMBIqMFYin5CzGLSR9kcOMrO_HXnWtpvvg92qjhtb31DvaeWNpXddUB6XfI217quhKDUOrLb3zu-GzU31POzu8eUOdDzT6XWviOTlxahftxe-ck9fHh5flc7ZaP9XL21WmscQhsws0FSwcrwojOGg02OSorHOu0paj5UpBhRa0EIXBnDfOlKxRTWEAGo04J1dTbvr742DjILf-EPp0UuZVqqJiApIqn1Q6-BiDdXIf2k6FUTKQ3-DkBE4mcPIHnByTCSdTTOJ-Y8Nf9D-uL2wJcTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777757190</pqid></control><display><type>article</type><title>Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids</title><source>SpringerNature Journals</source><creator>Müller, Henning ; Touil, Ali ; Schlüter, Alexander ; Müller, Ralf</creator><creatorcontrib>Müller, Henning ; Touil, Ali ; Schlüter, Alexander ; Müller, Ralf</creatorcontrib><description>This work presents concepts and algorithms for the simulation of dynamic fractures with a Lattice Boltzmann method (LBM) for linear elastic solids. This LBM has been presented previously and solves the wave equation, which is interpreted as the governing equation for antiplane shear deformation. Besides the steady growth of a crack at a prescribed crack velocity, a fracture criterion based on stress intensity factors has been implemented. This is the first time that crack propagation with a mechanically relevant criterion is regarded in the context of LBMs. Numerical results are examined to validate the proposed method. The concepts of crack propagation introduced here are not limited to mode III cracks or the simplified deformation assumption of antiplane shear. By introducing a rather simple processing step into the existing LBM at the level of individual lattice sites, the overall performance of the LBM is maintained. Our findings underline the validity of the LBM as a numerical tool to simulate solids in general as well as dynamic fractures in particular.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-022-02306-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Antiplane deformation ; Classical Mechanics ; Crack propagation ; Cracking (fracturing) ; Criteria ; Engineering ; Fractures ; Lattice sites ; Mathematical analysis ; Original ; Propagation ; Propagation modes ; Shear deformation ; Stress intensity factors ; Theoretical and Applied Mechanics ; Wave equations</subject><ispartof>Archive of applied mechanics (1991), 2023-03, Vol.93 (3), p.933-946</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e83d708f475d940c3d3b23aefff7ce43e4aa073e0c995d324bfd61bab5d00bc33</citedby><cites>FETCH-LOGICAL-c363t-e83d708f475d940c3d3b23aefff7ce43e4aa073e0c995d324bfd61bab5d00bc33</cites><orcidid>0000-0003-4819-2198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-022-02306-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-022-02306-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Müller, Henning</creatorcontrib><creatorcontrib>Touil, Ali</creatorcontrib><creatorcontrib>Schlüter, Alexander</creatorcontrib><creatorcontrib>Müller, Ralf</creatorcontrib><title>Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>This work presents concepts and algorithms for the simulation of dynamic fractures with a Lattice Boltzmann method (LBM) for linear elastic solids. This LBM has been presented previously and solves the wave equation, which is interpreted as the governing equation for antiplane shear deformation. Besides the steady growth of a crack at a prescribed crack velocity, a fracture criterion based on stress intensity factors has been implemented. This is the first time that crack propagation with a mechanically relevant criterion is regarded in the context of LBMs. Numerical results are examined to validate the proposed method. The concepts of crack propagation introduced here are not limited to mode III cracks or the simplified deformation assumption of antiplane shear. By introducing a rather simple processing step into the existing LBM at the level of individual lattice sites, the overall performance of the LBM is maintained. Our findings underline the validity of the LBM as a numerical tool to simulate solids in general as well as dynamic fractures in particular.</description><subject>Algorithms</subject><subject>Antiplane deformation</subject><subject>Classical Mechanics</subject><subject>Crack propagation</subject><subject>Cracking (fracturing)</subject><subject>Criteria</subject><subject>Engineering</subject><subject>Fractures</subject><subject>Lattice sites</subject><subject>Mathematical analysis</subject><subject>Original</subject><subject>Propagation</subject><subject>Propagation modes</subject><subject>Shear deformation</subject><subject>Stress intensity factors</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wave equations</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9VJJ203R12_Cgt70XNI87F23TZr0j3UX2-0gjcHhmHgfd8ZHkIuGVwzgOomAnAmMsjz1AhlNh6RGeOY1nLBjskMBIqMFYin5CzGLSR9kcOMrO_HXnWtpvvg92qjhtb31DvaeWNpXddUB6XfI217quhKDUOrLb3zu-GzU31POzu8eUOdDzT6XWviOTlxahftxe-ck9fHh5flc7ZaP9XL21WmscQhsws0FSwcrwojOGg02OSorHOu0paj5UpBhRa0EIXBnDfOlKxRTWEAGo04J1dTbvr742DjILf-EPp0UuZVqqJiApIqn1Q6-BiDdXIf2k6FUTKQ3-DkBE4mcPIHnByTCSdTTOJ-Y8Nf9D-uL2wJcTQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Müller, Henning</creator><creator>Touil, Ali</creator><creator>Schlüter, Alexander</creator><creator>Müller, Ralf</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4819-2198</orcidid></search><sort><creationdate>20230301</creationdate><title>Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids</title><author>Müller, Henning ; Touil, Ali ; Schlüter, Alexander ; Müller, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e83d708f475d940c3d3b23aefff7ce43e4aa073e0c995d324bfd61bab5d00bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Antiplane deformation</topic><topic>Classical Mechanics</topic><topic>Crack propagation</topic><topic>Cracking (fracturing)</topic><topic>Criteria</topic><topic>Engineering</topic><topic>Fractures</topic><topic>Lattice sites</topic><topic>Mathematical analysis</topic><topic>Original</topic><topic>Propagation</topic><topic>Propagation modes</topic><topic>Shear deformation</topic><topic>Stress intensity factors</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Henning</creatorcontrib><creatorcontrib>Touil, Ali</creatorcontrib><creatorcontrib>Schlüter, Alexander</creatorcontrib><creatorcontrib>Müller, Ralf</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Henning</au><au>Touil, Ali</au><au>Schlüter, Alexander</au><au>Müller, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>93</volume><issue>3</issue><spage>933</spage><epage>946</epage><pages>933-946</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>This work presents concepts and algorithms for the simulation of dynamic fractures with a Lattice Boltzmann method (LBM) for linear elastic solids. This LBM has been presented previously and solves the wave equation, which is interpreted as the governing equation for antiplane shear deformation. Besides the steady growth of a crack at a prescribed crack velocity, a fracture criterion based on stress intensity factors has been implemented. This is the first time that crack propagation with a mechanically relevant criterion is regarded in the context of LBMs. Numerical results are examined to validate the proposed method. The concepts of crack propagation introduced here are not limited to mode III cracks or the simplified deformation assumption of antiplane shear. By introducing a rather simple processing step into the existing LBM at the level of individual lattice sites, the overall performance of the LBM is maintained. Our findings underline the validity of the LBM as a numerical tool to simulate solids in general as well as dynamic fractures in particular.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-022-02306-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4819-2198</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0939-1533
ispartof Archive of applied mechanics (1991), 2023-03, Vol.93 (3), p.933-946
issn 0939-1533
1432-0681
language eng
recordid cdi_proquest_journals_2777757190
source SpringerNature Journals
subjects Algorithms
Antiplane deformation
Classical Mechanics
Crack propagation
Cracking (fracturing)
Criteria
Engineering
Fractures
Lattice sites
Mathematical analysis
Original
Propagation
Propagation modes
Shear deformation
Stress intensity factors
Theoretical and Applied Mechanics
Wave equations
title Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20propagation%20of%20mode%20III%20cracks%20in%20a%20Lattice%20Boltzmann%20method%20for%20solids&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=M%C3%BCller,%20Henning&rft.date=2023-03-01&rft.volume=93&rft.issue=3&rft.spage=933&rft.epage=946&rft.pages=933-946&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-022-02306-y&rft_dat=%3Cproquest_cross%3E2777757190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777757190&rft_id=info:pmid/&rfr_iscdi=true