Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids
This work presents concepts and algorithms for the simulation of dynamic fractures with a Lattice Boltzmann method (LBM) for linear elastic solids. This LBM has been presented previously and solves the wave equation, which is interpreted as the governing equation for antiplane shear deformation. Bes...
Gespeichert in:
Veröffentlicht in: | Archive of applied mechanics (1991) 2023-03, Vol.93 (3), p.933-946 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 946 |
---|---|
container_issue | 3 |
container_start_page | 933 |
container_title | Archive of applied mechanics (1991) |
container_volume | 93 |
creator | Müller, Henning Touil, Ali Schlüter, Alexander Müller, Ralf |
description | This work presents concepts and algorithms for the simulation of dynamic fractures with a Lattice Boltzmann method (LBM) for linear elastic solids. This LBM has been presented previously and solves the wave equation, which is interpreted as the governing equation for antiplane shear deformation. Besides the steady growth of a crack at a prescribed crack velocity, a fracture criterion based on stress intensity factors has been implemented. This is the first time that crack propagation with a mechanically relevant criterion is regarded in the context of LBMs. Numerical results are examined to validate the proposed method. The concepts of crack propagation introduced here are not limited to mode III cracks or the simplified deformation assumption of antiplane shear. By introducing a rather simple processing step into the existing LBM at the level of individual lattice sites, the overall performance of the LBM is maintained. Our findings underline the validity of the LBM as a numerical tool to simulate solids in general as well as dynamic fractures in particular. |
doi_str_mv | 10.1007/s00419-022-02306-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777757190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777757190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e83d708f475d940c3d3b23aefff7ce43e4aa073e0c995d324bfd61bab5d00bc33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9VJJ203R12_Cgt70XNI87F23TZr0j3UX2-0gjcHhmHgfd8ZHkIuGVwzgOomAnAmMsjz1AhlNh6RGeOY1nLBjskMBIqMFYin5CzGLSR9kcOMrO_HXnWtpvvg92qjhtb31DvaeWNpXddUB6XfI217quhKDUOrLb3zu-GzU31POzu8eUOdDzT6XWviOTlxahftxe-ck9fHh5flc7ZaP9XL21WmscQhsws0FSwcrwojOGg02OSorHOu0paj5UpBhRa0EIXBnDfOlKxRTWEAGo04J1dTbvr742DjILf-EPp0UuZVqqJiApIqn1Q6-BiDdXIf2k6FUTKQ3-DkBE4mcPIHnByTCSdTTOJ-Y8Nf9D-uL2wJcTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777757190</pqid></control><display><type>article</type><title>Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids</title><source>SpringerNature Journals</source><creator>Müller, Henning ; Touil, Ali ; Schlüter, Alexander ; Müller, Ralf</creator><creatorcontrib>Müller, Henning ; Touil, Ali ; Schlüter, Alexander ; Müller, Ralf</creatorcontrib><description>This work presents concepts and algorithms for the simulation of dynamic fractures with a Lattice Boltzmann method (LBM) for linear elastic solids. This LBM has been presented previously and solves the wave equation, which is interpreted as the governing equation for antiplane shear deformation. Besides the steady growth of a crack at a prescribed crack velocity, a fracture criterion based on stress intensity factors has been implemented. This is the first time that crack propagation with a mechanically relevant criterion is regarded in the context of LBMs. Numerical results are examined to validate the proposed method. The concepts of crack propagation introduced here are not limited to mode III cracks or the simplified deformation assumption of antiplane shear. By introducing a rather simple processing step into the existing LBM at the level of individual lattice sites, the overall performance of the LBM is maintained. Our findings underline the validity of the LBM as a numerical tool to simulate solids in general as well as dynamic fractures in particular.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-022-02306-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Antiplane deformation ; Classical Mechanics ; Crack propagation ; Cracking (fracturing) ; Criteria ; Engineering ; Fractures ; Lattice sites ; Mathematical analysis ; Original ; Propagation ; Propagation modes ; Shear deformation ; Stress intensity factors ; Theoretical and Applied Mechanics ; Wave equations</subject><ispartof>Archive of applied mechanics (1991), 2023-03, Vol.93 (3), p.933-946</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e83d708f475d940c3d3b23aefff7ce43e4aa073e0c995d324bfd61bab5d00bc33</citedby><cites>FETCH-LOGICAL-c363t-e83d708f475d940c3d3b23aefff7ce43e4aa073e0c995d324bfd61bab5d00bc33</cites><orcidid>0000-0003-4819-2198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-022-02306-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-022-02306-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Müller, Henning</creatorcontrib><creatorcontrib>Touil, Ali</creatorcontrib><creatorcontrib>Schlüter, Alexander</creatorcontrib><creatorcontrib>Müller, Ralf</creatorcontrib><title>Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>This work presents concepts and algorithms for the simulation of dynamic fractures with a Lattice Boltzmann method (LBM) for linear elastic solids. This LBM has been presented previously and solves the wave equation, which is interpreted as the governing equation for antiplane shear deformation. Besides the steady growth of a crack at a prescribed crack velocity, a fracture criterion based on stress intensity factors has been implemented. This is the first time that crack propagation with a mechanically relevant criterion is regarded in the context of LBMs. Numerical results are examined to validate the proposed method. The concepts of crack propagation introduced here are not limited to mode III cracks or the simplified deformation assumption of antiplane shear. By introducing a rather simple processing step into the existing LBM at the level of individual lattice sites, the overall performance of the LBM is maintained. Our findings underline the validity of the LBM as a numerical tool to simulate solids in general as well as dynamic fractures in particular.</description><subject>Algorithms</subject><subject>Antiplane deformation</subject><subject>Classical Mechanics</subject><subject>Crack propagation</subject><subject>Cracking (fracturing)</subject><subject>Criteria</subject><subject>Engineering</subject><subject>Fractures</subject><subject>Lattice sites</subject><subject>Mathematical analysis</subject><subject>Original</subject><subject>Propagation</subject><subject>Propagation modes</subject><subject>Shear deformation</subject><subject>Stress intensity factors</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wave equations</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9VJJ203R12_Cgt70XNI87F23TZr0j3UX2-0gjcHhmHgfd8ZHkIuGVwzgOomAnAmMsjz1AhlNh6RGeOY1nLBjskMBIqMFYin5CzGLSR9kcOMrO_HXnWtpvvg92qjhtb31DvaeWNpXddUB6XfI217quhKDUOrLb3zu-GzU31POzu8eUOdDzT6XWviOTlxahftxe-ck9fHh5flc7ZaP9XL21WmscQhsws0FSwcrwojOGg02OSorHOu0paj5UpBhRa0EIXBnDfOlKxRTWEAGo04J1dTbvr742DjILf-EPp0UuZVqqJiApIqn1Q6-BiDdXIf2k6FUTKQ3-DkBE4mcPIHnByTCSdTTOJ-Y8Nf9D-uL2wJcTQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Müller, Henning</creator><creator>Touil, Ali</creator><creator>Schlüter, Alexander</creator><creator>Müller, Ralf</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4819-2198</orcidid></search><sort><creationdate>20230301</creationdate><title>Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids</title><author>Müller, Henning ; Touil, Ali ; Schlüter, Alexander ; Müller, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e83d708f475d940c3d3b23aefff7ce43e4aa073e0c995d324bfd61bab5d00bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Antiplane deformation</topic><topic>Classical Mechanics</topic><topic>Crack propagation</topic><topic>Cracking (fracturing)</topic><topic>Criteria</topic><topic>Engineering</topic><topic>Fractures</topic><topic>Lattice sites</topic><topic>Mathematical analysis</topic><topic>Original</topic><topic>Propagation</topic><topic>Propagation modes</topic><topic>Shear deformation</topic><topic>Stress intensity factors</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Henning</creatorcontrib><creatorcontrib>Touil, Ali</creatorcontrib><creatorcontrib>Schlüter, Alexander</creatorcontrib><creatorcontrib>Müller, Ralf</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Henning</au><au>Touil, Ali</au><au>Schlüter, Alexander</au><au>Müller, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>93</volume><issue>3</issue><spage>933</spage><epage>946</epage><pages>933-946</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>This work presents concepts and algorithms for the simulation of dynamic fractures with a Lattice Boltzmann method (LBM) for linear elastic solids. This LBM has been presented previously and solves the wave equation, which is interpreted as the governing equation for antiplane shear deformation. Besides the steady growth of a crack at a prescribed crack velocity, a fracture criterion based on stress intensity factors has been implemented. This is the first time that crack propagation with a mechanically relevant criterion is regarded in the context of LBMs. Numerical results are examined to validate the proposed method. The concepts of crack propagation introduced here are not limited to mode III cracks or the simplified deformation assumption of antiplane shear. By introducing a rather simple processing step into the existing LBM at the level of individual lattice sites, the overall performance of the LBM is maintained. Our findings underline the validity of the LBM as a numerical tool to simulate solids in general as well as dynamic fractures in particular.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-022-02306-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4819-2198</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-1533 |
ispartof | Archive of applied mechanics (1991), 2023-03, Vol.93 (3), p.933-946 |
issn | 0939-1533 1432-0681 |
language | eng |
recordid | cdi_proquest_journals_2777757190 |
source | SpringerNature Journals |
subjects | Algorithms Antiplane deformation Classical Mechanics Crack propagation Cracking (fracturing) Criteria Engineering Fractures Lattice sites Mathematical analysis Original Propagation Propagation modes Shear deformation Stress intensity factors Theoretical and Applied Mechanics Wave equations |
title | Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20propagation%20of%20mode%20III%20cracks%20in%20a%20Lattice%20Boltzmann%20method%20for%20solids&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=M%C3%BCller,%20Henning&rft.date=2023-03-01&rft.volume=93&rft.issue=3&rft.spage=933&rft.epage=946&rft.pages=933-946&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-022-02306-y&rft_dat=%3Cproquest_cross%3E2777757190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777757190&rft_id=info:pmid/&rfr_iscdi=true |