Personalized Audio Quality Preference Prediction

This paper proposes to use both audio input and subject information to predict the personalized preference of two audio segments with the same content in different qualities. A siamese network is used to compare the inputs and predict the preference. Several different structures for each side of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Chung-Che, Wang, Yu-Chun, Lin, Yu-Teng, Hsu, Jang, Jyh-Shing Roger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chung-Che, Wang
Yu-Chun, Lin
Yu-Teng, Hsu
Jang, Jyh-Shing Roger
description This paper proposes to use both audio input and subject information to predict the personalized preference of two audio segments with the same content in different qualities. A siamese network is used to compare the inputs and predict the preference. Several different structures for each side of the siamese network are investigated, and an LDNet with PANNs' CNN6 as the encoder and a multi-layer perceptron block as the decoder outperforms a baseline model using only audio input the most, where the overall accuracy grows from 77.56% to 78.04%. Experimental results also show that using all the subject information, including age, gender, and the specifications of headphones or earphones, is more effective than using only a part of them.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2777530064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777530064</sourcerecordid><originalsourceid>FETCH-proquest_journals_27775300643</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCEgtKs7PS8zJrEpNUXAsTcnMVwgsBXJLKhUCilLTUotS85JTQcyUzOSSzPw8HgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1oENLA43sjc3NzU2MDAzMSYOFUAjCIzYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777530064</pqid></control><display><type>article</type><title>Personalized Audio Quality Preference Prediction</title><source>Free E- Journals</source><creator>Chung-Che, Wang ; Yu-Chun, Lin ; Yu-Teng, Hsu ; Jang, Jyh-Shing Roger</creator><creatorcontrib>Chung-Che, Wang ; Yu-Chun, Lin ; Yu-Teng, Hsu ; Jang, Jyh-Shing Roger</creatorcontrib><description>This paper proposes to use both audio input and subject information to predict the personalized preference of two audio segments with the same content in different qualities. A siamese network is used to compare the inputs and predict the preference. Several different structures for each side of the siamese network are investigated, and an LDNet with PANNs' CNN6 as the encoder and a multi-layer perceptron block as the decoder outperforms a baseline model using only audio input the most, where the overall accuracy grows from 77.56% to 78.04%. Experimental results also show that using all the subject information, including age, gender, and the specifications of headphones or earphones, is more effective than using only a part of them.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Audio data ; Coders ; Customization ; Earphones ; Multilayer perceptrons ; Multilayers</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Chung-Che, Wang</creatorcontrib><creatorcontrib>Yu-Chun, Lin</creatorcontrib><creatorcontrib>Yu-Teng, Hsu</creatorcontrib><creatorcontrib>Jang, Jyh-Shing Roger</creatorcontrib><title>Personalized Audio Quality Preference Prediction</title><title>arXiv.org</title><description>This paper proposes to use both audio input and subject information to predict the personalized preference of two audio segments with the same content in different qualities. A siamese network is used to compare the inputs and predict the preference. Several different structures for each side of the siamese network are investigated, and an LDNet with PANNs' CNN6 as the encoder and a multi-layer perceptron block as the decoder outperforms a baseline model using only audio input the most, where the overall accuracy grows from 77.56% to 78.04%. Experimental results also show that using all the subject information, including age, gender, and the specifications of headphones or earphones, is more effective than using only a part of them.</description><subject>Audio data</subject><subject>Coders</subject><subject>Customization</subject><subject>Earphones</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCEgtKs7PS8zJrEpNUXAsTcnMVwgsBXJLKhUCilLTUotS85JTQcyUzOSSzPw8HgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1oENLA43sjc3NzU2MDAzMSYOFUAjCIzYg</recordid><startdate>20230216</startdate><enddate>20230216</enddate><creator>Chung-Che, Wang</creator><creator>Yu-Chun, Lin</creator><creator>Yu-Teng, Hsu</creator><creator>Jang, Jyh-Shing Roger</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230216</creationdate><title>Personalized Audio Quality Preference Prediction</title><author>Chung-Che, Wang ; Yu-Chun, Lin ; Yu-Teng, Hsu ; Jang, Jyh-Shing Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27775300643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Audio data</topic><topic>Coders</topic><topic>Customization</topic><topic>Earphones</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><toplevel>online_resources</toplevel><creatorcontrib>Chung-Che, Wang</creatorcontrib><creatorcontrib>Yu-Chun, Lin</creatorcontrib><creatorcontrib>Yu-Teng, Hsu</creatorcontrib><creatorcontrib>Jang, Jyh-Shing Roger</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung-Che, Wang</au><au>Yu-Chun, Lin</au><au>Yu-Teng, Hsu</au><au>Jang, Jyh-Shing Roger</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Personalized Audio Quality Preference Prediction</atitle><jtitle>arXiv.org</jtitle><date>2023-02-16</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper proposes to use both audio input and subject information to predict the personalized preference of two audio segments with the same content in different qualities. A siamese network is used to compare the inputs and predict the preference. Several different structures for each side of the siamese network are investigated, and an LDNet with PANNs' CNN6 as the encoder and a multi-layer perceptron block as the decoder outperforms a baseline model using only audio input the most, where the overall accuracy grows from 77.56% to 78.04%. Experimental results also show that using all the subject information, including age, gender, and the specifications of headphones or earphones, is more effective than using only a part of them.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2777530064
source Free E- Journals
subjects Audio data
Coders
Customization
Earphones
Multilayer perceptrons
Multilayers
title Personalized Audio Quality Preference Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Personalized%20Audio%20Quality%20Preference%20Prediction&rft.jtitle=arXiv.org&rft.au=Chung-Che,%20Wang&rft.date=2023-02-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2777530064%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777530064&rft_id=info:pmid/&rfr_iscdi=true