On-chip fully reconfigurable Artificial Neural Network in 16 nm FinFET for Positron Emission Tomography

Smarty is a fully-reconfigurable on-chip feed-forward artificial neural network (ANN) with ten integrated time-to-digital converters (TDCs) designed in a 16 nm FinFET CMOS technology node. The integration of TDCs together with an ANN aims to reduce system complexity and minimize data throughput requ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Muntean, Andrada, Shoshan, Yonatan, Yuzhaninov, Slava, Ripiccini, Emanuele, Bruschini, Claudio, Fish, Alexander, Charbon, Edoardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Muntean, Andrada
Shoshan, Yonatan
Yuzhaninov, Slava
Ripiccini, Emanuele
Bruschini, Claudio
Fish, Alexander
Charbon, Edoardo
description Smarty is a fully-reconfigurable on-chip feed-forward artificial neural network (ANN) with ten integrated time-to-digital converters (TDCs) designed in a 16 nm FinFET CMOS technology node. The integration of TDCs together with an ANN aims to reduce system complexity and minimize data throughput requirements in positron emission tomography (PET) applications. The TDCs have an average LSB of 53.5 ps. The ANN is fully reconfigurable, the user being able to change its topology as desired within a set of constraints. The chip can execute 363 MOPS with a maximum power consumption of 1.9 mW, for an efficiency of 190 GOPS/W. The system performance was tested in a coincidence measurement setup interfacing Smarty with two groups of five 4 mm x 4 mm analog silicon photomultipliers (A-SiPMs) used as inputs for the TDCs. The ANN successfully distinguished between six different positions of a radioactive source placed between the two photodetector arrays by solely using the TDC timestamps.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2777529097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777529097</sourcerecordid><originalsourceid>FETCH-proquest_journals_27775290973</originalsourceid><addsrcrecordid>eNqNi8EKgkAURYcgKKp_eNBa0DGbWkYoraqFezGZsVfjPHujhH-fQR_Q6lzuuXci5jKOo2C3kXImVt4_wjCUWyWTJJ6L-uKC6o4tmN7aAVhX5AzWPZc3q-HAHRqssLRw1mP3RfcmfgI6iLbgGsjQZWkOhhiu5LFjcpA26D2OIaeGai7b-7AUU1Nar1c_LsR6vB1PQcv06rXvigf17EZVSKVUIvfhXsX_rT6rVUbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777529097</pqid></control><display><type>article</type><title>On-chip fully reconfigurable Artificial Neural Network in 16 nm FinFET for Positron Emission Tomography</title><source>Freely Accessible Journals</source><creator>Muntean, Andrada ; Shoshan, Yonatan ; Yuzhaninov, Slava ; Ripiccini, Emanuele ; Bruschini, Claudio ; Fish, Alexander ; Charbon, Edoardo</creator><creatorcontrib>Muntean, Andrada ; Shoshan, Yonatan ; Yuzhaninov, Slava ; Ripiccini, Emanuele ; Bruschini, Claudio ; Fish, Alexander ; Charbon, Edoardo</creatorcontrib><description>Smarty is a fully-reconfigurable on-chip feed-forward artificial neural network (ANN) with ten integrated time-to-digital converters (TDCs) designed in a 16 nm FinFET CMOS technology node. The integration of TDCs together with an ANN aims to reduce system complexity and minimize data throughput requirements in positron emission tomography (PET) applications. The TDCs have an average LSB of 53.5 ps. The ANN is fully reconfigurable, the user being able to change its topology as desired within a set of constraints. The chip can execute 363 MOPS with a maximum power consumption of 1.9 mW, for an efficiency of 190 GOPS/W. The system performance was tested in a coincidence measurement setup interfacing Smarty with two groups of five 4 mm x 4 mm analog silicon photomultipliers (A-SiPMs) used as inputs for the TDCs. The ANN successfully distinguished between six different positions of a radioactive source placed between the two photodetector arrays by solely using the TDC timestamps.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Maximum power ; Neural networks ; Photomultiplier tubes ; Positron emission ; Power consumption ; Reconfiguration ; Tomography ; Topology</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Muntean, Andrada</creatorcontrib><creatorcontrib>Shoshan, Yonatan</creatorcontrib><creatorcontrib>Yuzhaninov, Slava</creatorcontrib><creatorcontrib>Ripiccini, Emanuele</creatorcontrib><creatorcontrib>Bruschini, Claudio</creatorcontrib><creatorcontrib>Fish, Alexander</creatorcontrib><creatorcontrib>Charbon, Edoardo</creatorcontrib><title>On-chip fully reconfigurable Artificial Neural Network in 16 nm FinFET for Positron Emission Tomography</title><title>arXiv.org</title><description>Smarty is a fully-reconfigurable on-chip feed-forward artificial neural network (ANN) with ten integrated time-to-digital converters (TDCs) designed in a 16 nm FinFET CMOS technology node. The integration of TDCs together with an ANN aims to reduce system complexity and minimize data throughput requirements in positron emission tomography (PET) applications. The TDCs have an average LSB of 53.5 ps. The ANN is fully reconfigurable, the user being able to change its topology as desired within a set of constraints. The chip can execute 363 MOPS with a maximum power consumption of 1.9 mW, for an efficiency of 190 GOPS/W. The system performance was tested in a coincidence measurement setup interfacing Smarty with two groups of five 4 mm x 4 mm analog silicon photomultipliers (A-SiPMs) used as inputs for the TDCs. The ANN successfully distinguished between six different positions of a radioactive source placed between the two photodetector arrays by solely using the TDC timestamps.</description><subject>Artificial neural networks</subject><subject>Maximum power</subject><subject>Neural networks</subject><subject>Photomultiplier tubes</subject><subject>Positron emission</subject><subject>Power consumption</subject><subject>Reconfiguration</subject><subject>Tomography</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8EKgkAURYcgKKp_eNBa0DGbWkYoraqFezGZsVfjPHujhH-fQR_Q6lzuuXci5jKOo2C3kXImVt4_wjCUWyWTJJ6L-uKC6o4tmN7aAVhX5AzWPZc3q-HAHRqssLRw1mP3RfcmfgI6iLbgGsjQZWkOhhiu5LFjcpA26D2OIaeGai7b-7AUU1Nar1c_LsR6vB1PQcv06rXvigf17EZVSKVUIvfhXsX_rT6rVUbw</recordid><startdate>20230216</startdate><enddate>20230216</enddate><creator>Muntean, Andrada</creator><creator>Shoshan, Yonatan</creator><creator>Yuzhaninov, Slava</creator><creator>Ripiccini, Emanuele</creator><creator>Bruschini, Claudio</creator><creator>Fish, Alexander</creator><creator>Charbon, Edoardo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230216</creationdate><title>On-chip fully reconfigurable Artificial Neural Network in 16 nm FinFET for Positron Emission Tomography</title><author>Muntean, Andrada ; Shoshan, Yonatan ; Yuzhaninov, Slava ; Ripiccini, Emanuele ; Bruschini, Claudio ; Fish, Alexander ; Charbon, Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27775290973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Maximum power</topic><topic>Neural networks</topic><topic>Photomultiplier tubes</topic><topic>Positron emission</topic><topic>Power consumption</topic><topic>Reconfiguration</topic><topic>Tomography</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Muntean, Andrada</creatorcontrib><creatorcontrib>Shoshan, Yonatan</creatorcontrib><creatorcontrib>Yuzhaninov, Slava</creatorcontrib><creatorcontrib>Ripiccini, Emanuele</creatorcontrib><creatorcontrib>Bruschini, Claudio</creatorcontrib><creatorcontrib>Fish, Alexander</creatorcontrib><creatorcontrib>Charbon, Edoardo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muntean, Andrada</au><au>Shoshan, Yonatan</au><au>Yuzhaninov, Slava</au><au>Ripiccini, Emanuele</au><au>Bruschini, Claudio</au><au>Fish, Alexander</au><au>Charbon, Edoardo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On-chip fully reconfigurable Artificial Neural Network in 16 nm FinFET for Positron Emission Tomography</atitle><jtitle>arXiv.org</jtitle><date>2023-02-16</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Smarty is a fully-reconfigurable on-chip feed-forward artificial neural network (ANN) with ten integrated time-to-digital converters (TDCs) designed in a 16 nm FinFET CMOS technology node. The integration of TDCs together with an ANN aims to reduce system complexity and minimize data throughput requirements in positron emission tomography (PET) applications. The TDCs have an average LSB of 53.5 ps. The ANN is fully reconfigurable, the user being able to change its topology as desired within a set of constraints. The chip can execute 363 MOPS with a maximum power consumption of 1.9 mW, for an efficiency of 190 GOPS/W. The system performance was tested in a coincidence measurement setup interfacing Smarty with two groups of five 4 mm x 4 mm analog silicon photomultipliers (A-SiPMs) used as inputs for the TDCs. The ANN successfully distinguished between six different positions of a radioactive source placed between the two photodetector arrays by solely using the TDC timestamps.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2777529097
source Freely Accessible Journals
subjects Artificial neural networks
Maximum power
Neural networks
Photomultiplier tubes
Positron emission
Power consumption
Reconfiguration
Tomography
Topology
title On-chip fully reconfigurable Artificial Neural Network in 16 nm FinFET for Positron Emission Tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On-chip%20fully%20reconfigurable%20Artificial%20Neural%20Network%20in%2016%20nm%20FinFET%20for%20Positron%20Emission%20Tomography&rft.jtitle=arXiv.org&rft.au=Muntean,%20Andrada&rft.date=2023-02-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2777529097%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777529097&rft_id=info:pmid/&rfr_iscdi=true