Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials
In this paper, we focus on the integrability of a generalized (2+1)-dimensional equation with three arbitrary constants. By using Bell polynomials, the Hirota bilinear form is derived, as well as the N-soliton solutions are solved. Then the propagation and interaction of single and double soliton so...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2023-04, Vol.74 (2), Article 62 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 74 |
creator | Li, Chunhui Zhu, Mengkun Wang, Dan Zhang, Jinyu Wang, Xiaoli |
description | In this paper, we focus on the integrability of a generalized (2+1)-dimensional equation with three arbitrary constants. By using Bell polynomials, the Hirota bilinear form is derived, as well as the N-soliton solutions are solved. Then the propagation and interaction of single and double soliton solutions have been simulated graphically, and the properties of solitary waves are well presented. By virtue of the Hirota bilinear form, the bilinear Bäcklund transformation with two arbitrary real functions is obtained. Based on this, we consider the Lax pair and infinite conservation laws of this equation. |
doi_str_mv | 10.1007/s00033-023-01956-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777431815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777431815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d6fb5e7ff589321b1280e12d69c9d7241a0176c10191b8d09233ff8531bd32fd3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAiyLRTLK72Ry1-KdQ8KJeQ3aTlJTtpk22Qv30Rlfw5mF4MPzeY-YhdA70BigVt4lSyjmhLA_IsiLFAZpAwSiRlMtDNKG0KAhjojxGJymtMi6A8gl6n_eDXUbd-M4Pexwc1nhpext15z-twZfsGq6I8WvbJx963eEUMhl6bLc7PeQV_vAa39uuw5vQ7fuw9rpLp-jIZbFnvzpFb48Pr7Nnsnh5ms_uFqTlIAdiKteUVjhX1pIzaIDV1AIzlWylEawATUFULeSfoKkNlYxz5-qSQ2M4c4ZP0cWYu4lhu7NpUKuwi_nMpJgQouBQQ5kpNlJtDClF69Qm-rWOewVUffenxv5U7k_99KeKbOKjKWW4X9r4F_2P6wsZJXHv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777431815</pqid></control><display><type>article</type><title>Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials</title><source>Springer journals</source><creator>Li, Chunhui ; Zhu, Mengkun ; Wang, Dan ; Zhang, Jinyu ; Wang, Xiaoli</creator><creatorcontrib>Li, Chunhui ; Zhu, Mengkun ; Wang, Dan ; Zhang, Jinyu ; Wang, Xiaoli</creatorcontrib><description>In this paper, we focus on the integrability of a generalized (2+1)-dimensional equation with three arbitrary constants. By using Bell polynomials, the Hirota bilinear form is derived, as well as the N-soliton solutions are solved. Then the propagation and interaction of single and double soliton solutions have been simulated graphically, and the properties of solitary waves are well presented. By virtue of the Hirota bilinear form, the bilinear Bäcklund transformation with two arbitrary real functions is obtained. Based on this, we consider the Lax pair and infinite conservation laws of this equation.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-023-01956-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Combinatorial analysis ; Conservation laws ; Engineering ; Mathematical analysis ; Mathematical Methods in Physics ; Polynomials ; Solitary waves ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2023-04, Vol.74 (2), Article 62</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d6fb5e7ff589321b1280e12d69c9d7241a0176c10191b8d09233ff8531bd32fd3</citedby><cites>FETCH-LOGICAL-c319t-d6fb5e7ff589321b1280e12d69c9d7241a0176c10191b8d09233ff8531bd32fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-023-01956-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-023-01956-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Li, Chunhui</creatorcontrib><creatorcontrib>Zhu, Mengkun</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Zhang, Jinyu</creatorcontrib><creatorcontrib>Wang, Xiaoli</creatorcontrib><title>Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>In this paper, we focus on the integrability of a generalized (2+1)-dimensional equation with three arbitrary constants. By using Bell polynomials, the Hirota bilinear form is derived, as well as the N-soliton solutions are solved. Then the propagation and interaction of single and double soliton solutions have been simulated graphically, and the properties of solitary waves are well presented. By virtue of the Hirota bilinear form, the bilinear Bäcklund transformation with two arbitrary real functions is obtained. Based on this, we consider the Lax pair and infinite conservation laws of this equation.</description><subject>Combinatorial analysis</subject><subject>Conservation laws</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Polynomials</subject><subject>Solitary waves</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAiyLRTLK72Ry1-KdQ8KJeQ3aTlJTtpk22Qv30Rlfw5mF4MPzeY-YhdA70BigVt4lSyjmhLA_IsiLFAZpAwSiRlMtDNKG0KAhjojxGJymtMi6A8gl6n_eDXUbd-M4Pexwc1nhpext15z-twZfsGq6I8WvbJx963eEUMhl6bLc7PeQV_vAa39uuw5vQ7fuw9rpLp-jIZbFnvzpFb48Pr7Nnsnh5ms_uFqTlIAdiKteUVjhX1pIzaIDV1AIzlWylEawATUFULeSfoKkNlYxz5-qSQ2M4c4ZP0cWYu4lhu7NpUKuwi_nMpJgQouBQQ5kpNlJtDClF69Qm-rWOewVUffenxv5U7k_99KeKbOKjKWW4X9r4F_2P6wsZJXHv</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Li, Chunhui</creator><creator>Zhu, Mengkun</creator><creator>Wang, Dan</creator><creator>Zhang, Jinyu</creator><creator>Wang, Xiaoli</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials</title><author>Li, Chunhui ; Zhu, Mengkun ; Wang, Dan ; Zhang, Jinyu ; Wang, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d6fb5e7ff589321b1280e12d69c9d7241a0176c10191b8d09233ff8531bd32fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Combinatorial analysis</topic><topic>Conservation laws</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Polynomials</topic><topic>Solitary waves</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chunhui</creatorcontrib><creatorcontrib>Zhu, Mengkun</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Zhang, Jinyu</creatorcontrib><creatorcontrib>Wang, Xiaoli</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chunhui</au><au>Zhu, Mengkun</au><au>Wang, Dan</au><au>Zhang, Jinyu</au><au>Wang, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>74</volume><issue>2</issue><artnum>62</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>In this paper, we focus on the integrability of a generalized (2+1)-dimensional equation with three arbitrary constants. By using Bell polynomials, the Hirota bilinear form is derived, as well as the N-soliton solutions are solved. Then the propagation and interaction of single and double soliton solutions have been simulated graphically, and the properties of solitary waves are well presented. By virtue of the Hirota bilinear form, the bilinear Bäcklund transformation with two arbitrary real functions is obtained. Based on this, we consider the Lax pair and infinite conservation laws of this equation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-023-01956-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2023-04, Vol.74 (2), Article 62 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2777431815 |
source | Springer journals |
subjects | Combinatorial analysis Conservation laws Engineering Mathematical analysis Mathematical Methods in Physics Polynomials Solitary waves Theoretical and Applied Mechanics |
title | Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrability%20of%20a%20generalized%20(2+1)-dimensional%20soliton%20equation%20via%20Bell%20polynomials&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Li,%20Chunhui&rft.date=2023-04-01&rft.volume=74&rft.issue=2&rft.artnum=62&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-023-01956-4&rft_dat=%3Cproquest_cross%3E2777431815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777431815&rft_id=info:pmid/&rfr_iscdi=true |