Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials

In this paper, we focus on the integrability of a generalized (2+1)-dimensional equation with three arbitrary constants. By using Bell polynomials, the Hirota bilinear form is derived, as well as the N-soliton solutions are solved. Then the propagation and interaction of single and double soliton so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2023-04, Vol.74 (2), Article 62
Hauptverfasser: Li, Chunhui, Zhu, Mengkun, Wang, Dan, Zhang, Jinyu, Wang, Xiaoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 74
creator Li, Chunhui
Zhu, Mengkun
Wang, Dan
Zhang, Jinyu
Wang, Xiaoli
description In this paper, we focus on the integrability of a generalized (2+1)-dimensional equation with three arbitrary constants. By using Bell polynomials, the Hirota bilinear form is derived, as well as the N-soliton solutions are solved. Then the propagation and interaction of single and double soliton solutions have been simulated graphically, and the properties of solitary waves are well presented. By virtue of the Hirota bilinear form, the bilinear Bäcklund transformation with two arbitrary real functions is obtained. Based on this, we consider the Lax pair and infinite conservation laws of this equation.
doi_str_mv 10.1007/s00033-023-01956-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777431815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777431815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d6fb5e7ff589321b1280e12d69c9d7241a0176c10191b8d09233ff8531bd32fd3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAiyLRTLK72Ry1-KdQ8KJeQ3aTlJTtpk22Qv30Rlfw5mF4MPzeY-YhdA70BigVt4lSyjmhLA_IsiLFAZpAwSiRlMtDNKG0KAhjojxGJymtMi6A8gl6n_eDXUbd-M4Pexwc1nhpext15z-twZfsGq6I8WvbJx963eEUMhl6bLc7PeQV_vAa39uuw5vQ7fuw9rpLp-jIZbFnvzpFb48Pr7Nnsnh5ms_uFqTlIAdiKteUVjhX1pIzaIDV1AIzlWylEawATUFULeSfoKkNlYxz5-qSQ2M4c4ZP0cWYu4lhu7NpUKuwi_nMpJgQouBQQ5kpNlJtDClF69Qm-rWOewVUffenxv5U7k_99KeKbOKjKWW4X9r4F_2P6wsZJXHv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777431815</pqid></control><display><type>article</type><title>Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials</title><source>Springer journals</source><creator>Li, Chunhui ; Zhu, Mengkun ; Wang, Dan ; Zhang, Jinyu ; Wang, Xiaoli</creator><creatorcontrib>Li, Chunhui ; Zhu, Mengkun ; Wang, Dan ; Zhang, Jinyu ; Wang, Xiaoli</creatorcontrib><description>In this paper, we focus on the integrability of a generalized (2+1)-dimensional equation with three arbitrary constants. By using Bell polynomials, the Hirota bilinear form is derived, as well as the N-soliton solutions are solved. Then the propagation and interaction of single and double soliton solutions have been simulated graphically, and the properties of solitary waves are well presented. By virtue of the Hirota bilinear form, the bilinear Bäcklund transformation with two arbitrary real functions is obtained. Based on this, we consider the Lax pair and infinite conservation laws of this equation.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-023-01956-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Combinatorial analysis ; Conservation laws ; Engineering ; Mathematical analysis ; Mathematical Methods in Physics ; Polynomials ; Solitary waves ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2023-04, Vol.74 (2), Article 62</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d6fb5e7ff589321b1280e12d69c9d7241a0176c10191b8d09233ff8531bd32fd3</citedby><cites>FETCH-LOGICAL-c319t-d6fb5e7ff589321b1280e12d69c9d7241a0176c10191b8d09233ff8531bd32fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-023-01956-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-023-01956-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Li, Chunhui</creatorcontrib><creatorcontrib>Zhu, Mengkun</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Zhang, Jinyu</creatorcontrib><creatorcontrib>Wang, Xiaoli</creatorcontrib><title>Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>In this paper, we focus on the integrability of a generalized (2+1)-dimensional equation with three arbitrary constants. By using Bell polynomials, the Hirota bilinear form is derived, as well as the N-soliton solutions are solved. Then the propagation and interaction of single and double soliton solutions have been simulated graphically, and the properties of solitary waves are well presented. By virtue of the Hirota bilinear form, the bilinear Bäcklund transformation with two arbitrary real functions is obtained. Based on this, we consider the Lax pair and infinite conservation laws of this equation.</description><subject>Combinatorial analysis</subject><subject>Conservation laws</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Polynomials</subject><subject>Solitary waves</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAiyLRTLK72Ry1-KdQ8KJeQ3aTlJTtpk22Qv30Rlfw5mF4MPzeY-YhdA70BigVt4lSyjmhLA_IsiLFAZpAwSiRlMtDNKG0KAhjojxGJymtMi6A8gl6n_eDXUbd-M4Pexwc1nhpext15z-twZfsGq6I8WvbJx963eEUMhl6bLc7PeQV_vAa39uuw5vQ7fuw9rpLp-jIZbFnvzpFb48Pr7Nnsnh5ms_uFqTlIAdiKteUVjhX1pIzaIDV1AIzlWylEawATUFULeSfoKkNlYxz5-qSQ2M4c4ZP0cWYu4lhu7NpUKuwi_nMpJgQouBQQ5kpNlJtDClF69Qm-rWOewVUffenxv5U7k_99KeKbOKjKWW4X9r4F_2P6wsZJXHv</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Li, Chunhui</creator><creator>Zhu, Mengkun</creator><creator>Wang, Dan</creator><creator>Zhang, Jinyu</creator><creator>Wang, Xiaoli</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials</title><author>Li, Chunhui ; Zhu, Mengkun ; Wang, Dan ; Zhang, Jinyu ; Wang, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d6fb5e7ff589321b1280e12d69c9d7241a0176c10191b8d09233ff8531bd32fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Combinatorial analysis</topic><topic>Conservation laws</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Polynomials</topic><topic>Solitary waves</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chunhui</creatorcontrib><creatorcontrib>Zhu, Mengkun</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Zhang, Jinyu</creatorcontrib><creatorcontrib>Wang, Xiaoli</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chunhui</au><au>Zhu, Mengkun</au><au>Wang, Dan</au><au>Zhang, Jinyu</au><au>Wang, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>74</volume><issue>2</issue><artnum>62</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>In this paper, we focus on the integrability of a generalized (2+1)-dimensional equation with three arbitrary constants. By using Bell polynomials, the Hirota bilinear form is derived, as well as the N-soliton solutions are solved. Then the propagation and interaction of single and double soliton solutions have been simulated graphically, and the properties of solitary waves are well presented. By virtue of the Hirota bilinear form, the bilinear Bäcklund transformation with two arbitrary real functions is obtained. Based on this, we consider the Lax pair and infinite conservation laws of this equation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-023-01956-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2023-04, Vol.74 (2), Article 62
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2777431815
source Springer journals
subjects Combinatorial analysis
Conservation laws
Engineering
Mathematical analysis
Mathematical Methods in Physics
Polynomials
Solitary waves
Theoretical and Applied Mechanics
title Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrability%20of%20a%20generalized%20(2+1)-dimensional%20soliton%20equation%20via%20Bell%20polynomials&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Li,%20Chunhui&rft.date=2023-04-01&rft.volume=74&rft.issue=2&rft.artnum=62&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-023-01956-4&rft_dat=%3Cproquest_cross%3E2777431815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777431815&rft_id=info:pmid/&rfr_iscdi=true