LAYER-TO-LAYER ANGLE INTERLOCK 3D WOVEN BANDSTOP FREQUENCY SELECTIVE SURFACE
A flexible fully textile-integrated bandstop frequency selective surface working at a central frequency of 3.75 GHz and presenting a 0.6 GHz bandwidth has been designed, manufactured and experimentally characterised. The frequency selective surface consists of a multilayered woven fabric whose top l...
Gespeichert in:
Veröffentlicht in: | Electromagnetic waves (Cambridge, Mass.) Mass.), 2018-01, Vol.162, p.81-94 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | |
container_start_page | 81 |
container_title | Electromagnetic waves (Cambridge, Mass.) |
container_volume | 162 |
creator | Alonso-Gonzalez, Leticia Ver-Hoeye, Samuel Fernandez-Garcia, Miguel Las-Heras, Fernando |
description | A flexible fully textile-integrated bandstop frequency selective surface working at a central frequency of 3.75 GHz and presenting a 0.6 GHz bandwidth has been designed, manufactured and experimentally characterised. The frequency selective surface consists of a multilayered woven fabric whose top layer presents periodic cross-shaped conductive resonators, and due to its symmetries, its performance is largely independent of polarisation and angle of incidence. These properties make the prototype very interesting for shielding applications. The designed frequency selective surface is based on a layer-to-layer angle interlock 3D woven fabric. This technology provides the prototype with flexibility, portability and the possibility of manufacturing it in a large scale production by the use of existing industrial weaving machinery, in contrast to conventional frequency selective surfaces manufactured using rigid substrates. The proposed textile frequency selective surface has been simulated and experimentally validated providing good agreement between the simulations and measurements. The measured maximum attenuation has been found to be higher than 25 dB under normal incidence conditions. |
doi_str_mv | 10.2528/PIER18041707 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2777418514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A554689022</galeid><sourcerecordid>A554689022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-be023911cb2af8933c6822a3c86f765d24733821f5d876dda41d24e1d430a61d3</originalsourceid><addsrcrecordid>eNptkU1Lw0AQhhdRsNTe_AEBT4Kp-5FNNseYbmswJDVJKz0t22RTUtqmZlPQf2-0gi04c5hheN6ZgReAWwSHmGL2OA14ghi0kAOdC9BDlLomcxm9POmvwUDrNeyCWg6BqAfC0FvwxMxi86cxvGgSciOIMp6Esf9ikJHxFs95ZDx50SjN4qkxTvjrjEf-wkh5yP0smHMjnSVjz-c34KqUG60Gv7UPZmOe-c9mGE8C3wvN3IK4NZcKYuIilC-xLJlLSG4zjCXJmV06Ni1w9xthGJW0YI5dFNJC3UyhwiJQ2qggfXB33Ltv6veD0q1Y14dm150U2HEcCzGKrD9qJTdKVLuybhuZbyudC49Sy2YuxLijhv9QXRZqW-X1TpVVNz8T3J8JOqZVH-1KHrQWQZqcsw9HNm9qrRtVin1TbWXzKRAU366JU9fIF-Iafl8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777418514</pqid></control><display><type>article</type><title>LAYER-TO-LAYER ANGLE INTERLOCK 3D WOVEN BANDSTOP FREQUENCY SELECTIVE SURFACE</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alonso-Gonzalez, Leticia ; Ver-Hoeye, Samuel ; Fernandez-Garcia, Miguel ; Las-Heras, Fernando</creator><creatorcontrib>Alonso-Gonzalez, Leticia ; Ver-Hoeye, Samuel ; Fernandez-Garcia, Miguel ; Las-Heras, Fernando</creatorcontrib><description>A flexible fully textile-integrated bandstop frequency selective surface working at a central frequency of 3.75 GHz and presenting a 0.6 GHz bandwidth has been designed, manufactured and experimentally characterised. The frequency selective surface consists of a multilayered woven fabric whose top layer presents periodic cross-shaped conductive resonators, and due to its symmetries, its performance is largely independent of polarisation and angle of incidence. These properties make the prototype very interesting for shielding applications. The designed frequency selective surface is based on a layer-to-layer angle interlock 3D woven fabric. This technology provides the prototype with flexibility, portability and the possibility of manufacturing it in a large scale production by the use of existing industrial weaving machinery, in contrast to conventional frequency selective surfaces manufactured using rigid substrates. The proposed textile frequency selective surface has been simulated and experimentally validated providing good agreement between the simulations and measurements. The measured maximum attenuation has been found to be higher than 25 dB under normal incidence conditions.</description><identifier>ISSN: 1559-8985</identifier><identifier>ISSN: 1070-4698</identifier><identifier>EISSN: 1559-8985</identifier><identifier>DOI: 10.2528/PIER18041707</identifier><language>eng</language><publisher>Cambridge: Electromagnetics Academy</publisher><subject>Analysis ; Bandwidth ; Technology application ; Textiles</subject><ispartof>Electromagnetic waves (Cambridge, Mass.), 2018-01, Vol.162, p.81-94</ispartof><rights>COPYRIGHT 2018 Electromagnetics Academy</rights><rights>2018. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jpier.org/about/aims-scope.html</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-be023911cb2af8933c6822a3c86f765d24733821f5d876dda41d24e1d430a61d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Alonso-Gonzalez, Leticia</creatorcontrib><creatorcontrib>Ver-Hoeye, Samuel</creatorcontrib><creatorcontrib>Fernandez-Garcia, Miguel</creatorcontrib><creatorcontrib>Las-Heras, Fernando</creatorcontrib><title>LAYER-TO-LAYER ANGLE INTERLOCK 3D WOVEN BANDSTOP FREQUENCY SELECTIVE SURFACE</title><title>Electromagnetic waves (Cambridge, Mass.)</title><description>A flexible fully textile-integrated bandstop frequency selective surface working at a central frequency of 3.75 GHz and presenting a 0.6 GHz bandwidth has been designed, manufactured and experimentally characterised. The frequency selective surface consists of a multilayered woven fabric whose top layer presents periodic cross-shaped conductive resonators, and due to its symmetries, its performance is largely independent of polarisation and angle of incidence. These properties make the prototype very interesting for shielding applications. The designed frequency selective surface is based on a layer-to-layer angle interlock 3D woven fabric. This technology provides the prototype with flexibility, portability and the possibility of manufacturing it in a large scale production by the use of existing industrial weaving machinery, in contrast to conventional frequency selective surfaces manufactured using rigid substrates. The proposed textile frequency selective surface has been simulated and experimentally validated providing good agreement between the simulations and measurements. The measured maximum attenuation has been found to be higher than 25 dB under normal incidence conditions.</description><subject>Analysis</subject><subject>Bandwidth</subject><subject>Technology application</subject><subject>Textiles</subject><issn>1559-8985</issn><issn>1070-4698</issn><issn>1559-8985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkU1Lw0AQhhdRsNTe_AEBT4Kp-5FNNseYbmswJDVJKz0t22RTUtqmZlPQf2-0gi04c5hheN6ZgReAWwSHmGL2OA14ghi0kAOdC9BDlLomcxm9POmvwUDrNeyCWg6BqAfC0FvwxMxi86cxvGgSciOIMp6Esf9ikJHxFs95ZDx50SjN4qkxTvjrjEf-wkh5yP0smHMjnSVjz-c34KqUG60Gv7UPZmOe-c9mGE8C3wvN3IK4NZcKYuIilC-xLJlLSG4zjCXJmV06Ni1w9xthGJW0YI5dFNJC3UyhwiJQ2qggfXB33Ltv6veD0q1Y14dm150U2HEcCzGKrD9qJTdKVLuybhuZbyudC49Sy2YuxLijhv9QXRZqW-X1TpVVNz8T3J8JOqZVH-1KHrQWQZqcsw9HNm9qrRtVin1TbWXzKRAU366JU9fIF-Iafl8</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Alonso-Gonzalez, Leticia</creator><creator>Ver-Hoeye, Samuel</creator><creator>Fernandez-Garcia, Miguel</creator><creator>Las-Heras, Fernando</creator><general>Electromagnetics Academy</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180101</creationdate><title>LAYER-TO-LAYER ANGLE INTERLOCK 3D WOVEN BANDSTOP FREQUENCY SELECTIVE SURFACE</title><author>Alonso-Gonzalez, Leticia ; Ver-Hoeye, Samuel ; Fernandez-Garcia, Miguel ; Las-Heras, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-be023911cb2af8933c6822a3c86f765d24733821f5d876dda41d24e1d430a61d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Bandwidth</topic><topic>Technology application</topic><topic>Textiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso-Gonzalez, Leticia</creatorcontrib><creatorcontrib>Ver-Hoeye, Samuel</creatorcontrib><creatorcontrib>Fernandez-Garcia, Miguel</creatorcontrib><creatorcontrib>Las-Heras, Fernando</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electromagnetic waves (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso-Gonzalez, Leticia</au><au>Ver-Hoeye, Samuel</au><au>Fernandez-Garcia, Miguel</au><au>Las-Heras, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LAYER-TO-LAYER ANGLE INTERLOCK 3D WOVEN BANDSTOP FREQUENCY SELECTIVE SURFACE</atitle><jtitle>Electromagnetic waves (Cambridge, Mass.)</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>162</volume><spage>81</spage><epage>94</epage><pages>81-94</pages><issn>1559-8985</issn><issn>1070-4698</issn><eissn>1559-8985</eissn><abstract>A flexible fully textile-integrated bandstop frequency selective surface working at a central frequency of 3.75 GHz and presenting a 0.6 GHz bandwidth has been designed, manufactured and experimentally characterised. The frequency selective surface consists of a multilayered woven fabric whose top layer presents periodic cross-shaped conductive resonators, and due to its symmetries, its performance is largely independent of polarisation and angle of incidence. These properties make the prototype very interesting for shielding applications. The designed frequency selective surface is based on a layer-to-layer angle interlock 3D woven fabric. This technology provides the prototype with flexibility, portability and the possibility of manufacturing it in a large scale production by the use of existing industrial weaving machinery, in contrast to conventional frequency selective surfaces manufactured using rigid substrates. The proposed textile frequency selective surface has been simulated and experimentally validated providing good agreement between the simulations and measurements. The measured maximum attenuation has been found to be higher than 25 dB under normal incidence conditions.</abstract><cop>Cambridge</cop><pub>Electromagnetics Academy</pub><doi>10.2528/PIER18041707</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-8985 |
ispartof | Electromagnetic waves (Cambridge, Mass.), 2018-01, Vol.162, p.81-94 |
issn | 1559-8985 1070-4698 1559-8985 |
language | eng |
recordid | cdi_proquest_journals_2777418514 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Analysis Bandwidth Technology application Textiles |
title | LAYER-TO-LAYER ANGLE INTERLOCK 3D WOVEN BANDSTOP FREQUENCY SELECTIVE SURFACE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LAYER-TO-LAYER%20ANGLE%20INTERLOCK%203D%20WOVEN%20BANDSTOP%20FREQUENCY%20SELECTIVE%20SURFACE&rft.jtitle=Electromagnetic%20waves%20(Cambridge,%20Mass.)&rft.au=Alonso-Gonzalez,%20Leticia&rft.date=2018-01-01&rft.volume=162&rft.spage=81&rft.epage=94&rft.pages=81-94&rft.issn=1559-8985&rft.eissn=1559-8985&rft_id=info:doi/10.2528/PIER18041707&rft_dat=%3Cgale_proqu%3EA554689022%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777418514&rft_id=info:pmid/&rft_galeid=A554689022&rfr_iscdi=true |