Aariz: A Benchmark Dataset for Automatic Cephalometric Landmark Detection and CVM Stage Classification

The accurate identification and precise localization of cephalometric landmarks enable the classification and quantification of anatomical abnormalities. The traditional way of marking cephalometric landmarks on lateral cephalograms is a monotonous and time-consuming job. Endeavours to develop autom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Khalid, Muhammad Anwaar, Kanwal Zulfiqar, Bashir, Ulfat, Shaheen, Areeba, Iqbal, Rida, Zarnab Rizwan, Rizwan, Ghina, Fraz, Muhammad Moazam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Khalid, Muhammad Anwaar
Kanwal Zulfiqar
Bashir, Ulfat
Shaheen, Areeba
Iqbal, Rida
Zarnab Rizwan
Rizwan, Ghina
Fraz, Muhammad Moazam
description The accurate identification and precise localization of cephalometric landmarks enable the classification and quantification of anatomical abnormalities. The traditional way of marking cephalometric landmarks on lateral cephalograms is a monotonous and time-consuming job. Endeavours to develop automated landmark detection systems have persistently been made, however, they are inadequate for orthodontic applications due to unavailability of a reliable dataset. We proposed a new state-of-the-art dataset to facilitate the development of robust AI solutions for quantitative morphometric analysis. The dataset includes 1000 lateral cephalometric radiographs (LCRs) obtained from 7 different radiographic imaging devices with varying resolutions, making it the most diverse and comprehensive cephalometric dataset to date. The clinical experts of our team meticulously annotated each radiograph with 29 cephalometric landmarks, including the most significant soft tissue landmarks ever marked in any publicly available dataset. Additionally, our experts also labelled the cervical vertebral maturation (CVM) stage of the patient in a radiograph, making this dataset the first standard resource for CVM classification. We believe that this dataset will be instrumental in the development of reliable automated landmark detection frameworks for use in orthodontics and beyond.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2777168508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777168508</sourcerecordid><originalsourceid>FETCH-proquest_journals_27771685083</originalsourceid><addsrcrecordid>eNqNis0KgkAURocgSMp3uNBa0DF_aGdWtKhV0VYudq0pdWzmuunpM-oBWn2c75yRcGQYBl66kHIiXGvvvu_LOJFRFDqiytCo1xIyWFFb3ho0D1gjoyWGShvIetYNsiohp-6GtW6IzUB7bC_fmJhKVrqF4YH8fIAj45Ugr9FaVakSP3ImxhXWltzfTsV8uznlO68z-tmT5eKue9MOqpBJkgRxGvlp-F_1Bh-ORkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777168508</pqid></control><display><type>article</type><title>Aariz: A Benchmark Dataset for Automatic Cephalometric Landmark Detection and CVM Stage Classification</title><source>Free E- Journals</source><creator>Khalid, Muhammad Anwaar ; Kanwal Zulfiqar ; Bashir, Ulfat ; Shaheen, Areeba ; Iqbal, Rida ; Zarnab Rizwan ; Rizwan, Ghina ; Fraz, Muhammad Moazam</creator><creatorcontrib>Khalid, Muhammad Anwaar ; Kanwal Zulfiqar ; Bashir, Ulfat ; Shaheen, Areeba ; Iqbal, Rida ; Zarnab Rizwan ; Rizwan, Ghina ; Fraz, Muhammad Moazam</creatorcontrib><description>The accurate identification and precise localization of cephalometric landmarks enable the classification and quantification of anatomical abnormalities. The traditional way of marking cephalometric landmarks on lateral cephalograms is a monotonous and time-consuming job. Endeavours to develop automated landmark detection systems have persistently been made, however, they are inadequate for orthodontic applications due to unavailability of a reliable dataset. We proposed a new state-of-the-art dataset to facilitate the development of robust AI solutions for quantitative morphometric analysis. The dataset includes 1000 lateral cephalometric radiographs (LCRs) obtained from 7 different radiographic imaging devices with varying resolutions, making it the most diverse and comprehensive cephalometric dataset to date. The clinical experts of our team meticulously annotated each radiograph with 29 cephalometric landmarks, including the most significant soft tissue landmarks ever marked in any publicly available dataset. Additionally, our experts also labelled the cervical vertebral maturation (CVM) stage of the patient in a radiograph, making this dataset the first standard resource for CVM classification. We believe that this dataset will be instrumental in the development of reliable automated landmark detection frameworks for use in orthodontics and beyond.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Abnormalities ; Automation ; Availability ; Classification ; Datasets ; Orthodontics ; Radiographs ; Soft tissues</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Khalid, Muhammad Anwaar</creatorcontrib><creatorcontrib>Kanwal Zulfiqar</creatorcontrib><creatorcontrib>Bashir, Ulfat</creatorcontrib><creatorcontrib>Shaheen, Areeba</creatorcontrib><creatorcontrib>Iqbal, Rida</creatorcontrib><creatorcontrib>Zarnab Rizwan</creatorcontrib><creatorcontrib>Rizwan, Ghina</creatorcontrib><creatorcontrib>Fraz, Muhammad Moazam</creatorcontrib><title>Aariz: A Benchmark Dataset for Automatic Cephalometric Landmark Detection and CVM Stage Classification</title><title>arXiv.org</title><description>The accurate identification and precise localization of cephalometric landmarks enable the classification and quantification of anatomical abnormalities. The traditional way of marking cephalometric landmarks on lateral cephalograms is a monotonous and time-consuming job. Endeavours to develop automated landmark detection systems have persistently been made, however, they are inadequate for orthodontic applications due to unavailability of a reliable dataset. We proposed a new state-of-the-art dataset to facilitate the development of robust AI solutions for quantitative morphometric analysis. The dataset includes 1000 lateral cephalometric radiographs (LCRs) obtained from 7 different radiographic imaging devices with varying resolutions, making it the most diverse and comprehensive cephalometric dataset to date. The clinical experts of our team meticulously annotated each radiograph with 29 cephalometric landmarks, including the most significant soft tissue landmarks ever marked in any publicly available dataset. Additionally, our experts also labelled the cervical vertebral maturation (CVM) stage of the patient in a radiograph, making this dataset the first standard resource for CVM classification. We believe that this dataset will be instrumental in the development of reliable automated landmark detection frameworks for use in orthodontics and beyond.</description><subject>Abnormalities</subject><subject>Automation</subject><subject>Availability</subject><subject>Classification</subject><subject>Datasets</subject><subject>Orthodontics</subject><subject>Radiographs</subject><subject>Soft tissues</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNis0KgkAURocgSMp3uNBa0DF_aGdWtKhV0VYudq0pdWzmuunpM-oBWn2c75yRcGQYBl66kHIiXGvvvu_LOJFRFDqiytCo1xIyWFFb3ho0D1gjoyWGShvIetYNsiohp-6GtW6IzUB7bC_fmJhKVrqF4YH8fIAj45Ugr9FaVakSP3ImxhXWltzfTsV8uznlO68z-tmT5eKue9MOqpBJkgRxGvlp-F_1Bh-ORkQ</recordid><startdate>20230215</startdate><enddate>20230215</enddate><creator>Khalid, Muhammad Anwaar</creator><creator>Kanwal Zulfiqar</creator><creator>Bashir, Ulfat</creator><creator>Shaheen, Areeba</creator><creator>Iqbal, Rida</creator><creator>Zarnab Rizwan</creator><creator>Rizwan, Ghina</creator><creator>Fraz, Muhammad Moazam</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230215</creationdate><title>Aariz: A Benchmark Dataset for Automatic Cephalometric Landmark Detection and CVM Stage Classification</title><author>Khalid, Muhammad Anwaar ; Kanwal Zulfiqar ; Bashir, Ulfat ; Shaheen, Areeba ; Iqbal, Rida ; Zarnab Rizwan ; Rizwan, Ghina ; Fraz, Muhammad Moazam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27771685083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abnormalities</topic><topic>Automation</topic><topic>Availability</topic><topic>Classification</topic><topic>Datasets</topic><topic>Orthodontics</topic><topic>Radiographs</topic><topic>Soft tissues</topic><toplevel>online_resources</toplevel><creatorcontrib>Khalid, Muhammad Anwaar</creatorcontrib><creatorcontrib>Kanwal Zulfiqar</creatorcontrib><creatorcontrib>Bashir, Ulfat</creatorcontrib><creatorcontrib>Shaheen, Areeba</creatorcontrib><creatorcontrib>Iqbal, Rida</creatorcontrib><creatorcontrib>Zarnab Rizwan</creatorcontrib><creatorcontrib>Rizwan, Ghina</creatorcontrib><creatorcontrib>Fraz, Muhammad Moazam</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalid, Muhammad Anwaar</au><au>Kanwal Zulfiqar</au><au>Bashir, Ulfat</au><au>Shaheen, Areeba</au><au>Iqbal, Rida</au><au>Zarnab Rizwan</au><au>Rizwan, Ghina</au><au>Fraz, Muhammad Moazam</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Aariz: A Benchmark Dataset for Automatic Cephalometric Landmark Detection and CVM Stage Classification</atitle><jtitle>arXiv.org</jtitle><date>2023-02-15</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The accurate identification and precise localization of cephalometric landmarks enable the classification and quantification of anatomical abnormalities. The traditional way of marking cephalometric landmarks on lateral cephalograms is a monotonous and time-consuming job. Endeavours to develop automated landmark detection systems have persistently been made, however, they are inadequate for orthodontic applications due to unavailability of a reliable dataset. We proposed a new state-of-the-art dataset to facilitate the development of robust AI solutions for quantitative morphometric analysis. The dataset includes 1000 lateral cephalometric radiographs (LCRs) obtained from 7 different radiographic imaging devices with varying resolutions, making it the most diverse and comprehensive cephalometric dataset to date. The clinical experts of our team meticulously annotated each radiograph with 29 cephalometric landmarks, including the most significant soft tissue landmarks ever marked in any publicly available dataset. Additionally, our experts also labelled the cervical vertebral maturation (CVM) stage of the patient in a radiograph, making this dataset the first standard resource for CVM classification. We believe that this dataset will be instrumental in the development of reliable automated landmark detection frameworks for use in orthodontics and beyond.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2777168508
source Free E- Journals
subjects Abnormalities
Automation
Availability
Classification
Datasets
Orthodontics
Radiographs
Soft tissues
title Aariz: A Benchmark Dataset for Automatic Cephalometric Landmark Detection and CVM Stage Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Aariz:%20A%20Benchmark%20Dataset%20for%20Automatic%20Cephalometric%20Landmark%20Detection%20and%20CVM%20Stage%20Classification&rft.jtitle=arXiv.org&rft.au=Khalid,%20Muhammad%20Anwaar&rft.date=2023-02-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2777168508%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777168508&rft_id=info:pmid/&rfr_iscdi=true