EdgeYOLO: An Edge-Real-Time Object Detector
This paper proposes an efficient, low-complexity and anchor-free object detector based on the state-of-the-art YOLO framework, which can be implemented in real time on edge computing platforms. We develop an enhanced data augmentation method to effectively suppress overfitting during training, and d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Liu, Shihan Zha, Junlin Sun, Jian Li, Zhuo Wang, Gang |
description | This paper proposes an efficient, low-complexity and anchor-free object detector based on the state-of-the-art YOLO framework, which can be implemented in real time on edge computing platforms. We develop an enhanced data augmentation method to effectively suppress overfitting during training, and design a hybrid random loss function to improve the detection accuracy of small objects. Inspired by FCOS, a lighter and more efficient decoupled head is proposed, and its inference speed can be improved with little loss of precision. Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP50 in MS COCO2017 dataset, 26.4% AP50:95 and 44.8% AP50 in VisDrone2019-DET dataset, and it meets real-time requirements (FPS>=30) on edge-computing device Nvidia Jetson AGX Xavier. We also designed lighter models with less parameters for edge computing devices with lower computing power, which also show better performances. Our source code, hyper-parameters and model weights are all available at https://github.com/LSH9832/edgeyolo. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2777166618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777166618</sourcerecordid><originalsourceid>FETCH-proquest_journals_27771666183</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdk1JT4309_G3UnDMUwBxdINSE3N0QzJzUxX8k7JSk0sUXFJLgFR-EQ8Da1piTnEqL5TmZlB2cw1x9tAtKMovLE0tLonPyi8tygNKxRuZm5sbmpmZGVoYE6cKAIWdL6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777166618</pqid></control><display><type>article</type><title>EdgeYOLO: An Edge-Real-Time Object Detector</title><source>Free E- Journals</source><creator>Liu, Shihan ; Zha, Junlin ; Sun, Jian ; Li, Zhuo ; Wang, Gang</creator><creatorcontrib>Liu, Shihan ; Zha, Junlin ; Sun, Jian ; Li, Zhuo ; Wang, Gang</creatorcontrib><description>This paper proposes an efficient, low-complexity and anchor-free object detector based on the state-of-the-art YOLO framework, which can be implemented in real time on edge computing platforms. We develop an enhanced data augmentation method to effectively suppress overfitting during training, and design a hybrid random loss function to improve the detection accuracy of small objects. Inspired by FCOS, a lighter and more efficient decoupled head is proposed, and its inference speed can be improved with little loss of precision. Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP50 in MS COCO2017 dataset, 26.4% AP50:95 and 44.8% AP50 in VisDrone2019-DET dataset, and it meets real-time requirements (FPS>=30) on edge-computing device Nvidia Jetson AGX Xavier. We also designed lighter models with less parameters for edge computing devices with lower computing power, which also show better performances. Our source code, hyper-parameters and model weights are all available at https://github.com/LSH9832/edgeyolo.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Datasets ; Edge computing ; Mathematical models ; Object recognition ; Parameters ; Real time ; Source code</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Liu, Shihan</creatorcontrib><creatorcontrib>Zha, Junlin</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Li, Zhuo</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><title>EdgeYOLO: An Edge-Real-Time Object Detector</title><title>arXiv.org</title><description>This paper proposes an efficient, low-complexity and anchor-free object detector based on the state-of-the-art YOLO framework, which can be implemented in real time on edge computing platforms. We develop an enhanced data augmentation method to effectively suppress overfitting during training, and design a hybrid random loss function to improve the detection accuracy of small objects. Inspired by FCOS, a lighter and more efficient decoupled head is proposed, and its inference speed can be improved with little loss of precision. Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP50 in MS COCO2017 dataset, 26.4% AP50:95 and 44.8% AP50 in VisDrone2019-DET dataset, and it meets real-time requirements (FPS>=30) on edge-computing device Nvidia Jetson AGX Xavier. We also designed lighter models with less parameters for edge computing devices with lower computing power, which also show better performances. Our source code, hyper-parameters and model weights are all available at https://github.com/LSH9832/edgeyolo.</description><subject>Accuracy</subject><subject>Datasets</subject><subject>Edge computing</subject><subject>Mathematical models</subject><subject>Object recognition</subject><subject>Parameters</subject><subject>Real time</subject><subject>Source code</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdk1JT4309_G3UnDMUwBxdINSE3N0QzJzUxX8k7JSk0sUXFJLgFR-EQ8Da1piTnEqL5TmZlB2cw1x9tAtKMovLE0tLonPyi8tygNKxRuZm5sbmpmZGVoYE6cKAIWdL6o</recordid><startdate>20230215</startdate><enddate>20230215</enddate><creator>Liu, Shihan</creator><creator>Zha, Junlin</creator><creator>Sun, Jian</creator><creator>Li, Zhuo</creator><creator>Wang, Gang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230215</creationdate><title>EdgeYOLO: An Edge-Real-Time Object Detector</title><author>Liu, Shihan ; Zha, Junlin ; Sun, Jian ; Li, Zhuo ; Wang, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27771666183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Datasets</topic><topic>Edge computing</topic><topic>Mathematical models</topic><topic>Object recognition</topic><topic>Parameters</topic><topic>Real time</topic><topic>Source code</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shihan</creatorcontrib><creatorcontrib>Zha, Junlin</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Li, Zhuo</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shihan</au><au>Zha, Junlin</au><au>Sun, Jian</au><au>Li, Zhuo</au><au>Wang, Gang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>EdgeYOLO: An Edge-Real-Time Object Detector</atitle><jtitle>arXiv.org</jtitle><date>2023-02-15</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper proposes an efficient, low-complexity and anchor-free object detector based on the state-of-the-art YOLO framework, which can be implemented in real time on edge computing platforms. We develop an enhanced data augmentation method to effectively suppress overfitting during training, and design a hybrid random loss function to improve the detection accuracy of small objects. Inspired by FCOS, a lighter and more efficient decoupled head is proposed, and its inference speed can be improved with little loss of precision. Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP50 in MS COCO2017 dataset, 26.4% AP50:95 and 44.8% AP50 in VisDrone2019-DET dataset, and it meets real-time requirements (FPS>=30) on edge-computing device Nvidia Jetson AGX Xavier. We also designed lighter models with less parameters for edge computing devices with lower computing power, which also show better performances. Our source code, hyper-parameters and model weights are all available at https://github.com/LSH9832/edgeyolo.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2777166618 |
source | Free E- Journals |
subjects | Accuracy Datasets Edge computing Mathematical models Object recognition Parameters Real time Source code |
title | EdgeYOLO: An Edge-Real-Time Object Detector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=EdgeYOLO:%20An%20Edge-Real-Time%20Object%20Detector&rft.jtitle=arXiv.org&rft.au=Liu,%20Shihan&rft.date=2023-02-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2777166618%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777166618&rft_id=info:pmid/&rfr_iscdi=true |