Numerical simulation of continuous laser microdrilling of ultrathick aluminum honeycomb sandwich panels
Ultrathick aluminum honeycomb sandwich panels, which have high strength/stiffness-to-weight ratio, have been applied widely in satellites and other aerospace fields. However, the ultrathick aluminum honeycomb sandwich panels are difficult to be machined. In many cases, laser ablation is used for the...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2023-03, Vol.125 (3-4), p.1689-1700 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1700 |
---|---|
container_issue | 3-4 |
container_start_page | 1689 |
container_title | International journal of advanced manufacturing technology |
container_volume | 125 |
creator | Chang, Yubo E, Shiju Sun, Aixi Cai, Jiancheng Qin, Yuzhou Kou, Jianlong Wang, Chengwu Zhang, Yu Xu, Zisheng |
description | Ultrathick aluminum honeycomb sandwich panels, which have high strength/stiffness-to-weight ratio, have been applied widely in satellites and other aerospace fields. However, the ultrathick aluminum honeycomb sandwich panels are difficult to be machined. In many cases, laser ablation is used for the microdrilling demand of aluminum honeycomb sandwich panels. The heat flux density is the key factor during laser machining, and the microdrilling parameters, including defocusing amount and incident angle, can lead to the change of the temperature fields of upper panel, cell walls, and lower panel. To study the microdrilling process quantitatively, the finite element model (FEM) is performed to evaluate the temperature evolution of aluminum honeycomb sandwich panels during continuous laser irradiation. Moreover, continuous laser microdrilling characteristics of upper panel, cell walls and lower panel are discussed via numerical simulation. The relative errors with respect to experimental results are in range of 8% showing that simulation results of laser microdrilling are reasonable. Thus, the mechanism of laser microdrilling revealed in this study can be significant for improving the processing quality of aluminum honeycomb sandwich panels. |
doi_str_mv | 10.1007/s00170-022-10802-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777158808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777158808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-89bfc823917a5712e09e59f355e074c1ee13992861711dcb6c5d6fb04756183a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMQfes5vYGVHFl1TBArPlOE7r4tjFToT496QUiY3pLefeq3cIuUS4RgBxkwFQQAGMFQgSWMGOyAwXnBccsDwmM2CVLLio5Ck5y3k74RVWckbWz2NvkzPa0-z60evBxUBjR00MgwtjHDP1OttEe2dSbJPz3oX1nhj9kPSwceadaj_2E9zTTQz2y8S-oVmH9tOZDd3pYH0-Jyed9tle_N45ebu_e10-FquXh6fl7aowTMBQyLrpjGS8RqFLgcxCbcu642VpQSwMWou8rpmsUCC2pqlM2VZdAwtRVii55nNydejdpfgx2jyobRxTmCYVE0JgKSXIiWIHanop52Q7tUuu1-lLIai9UHUQqiah6keoYlOIH0J5gsPapr_qf1LftCB5-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777158808</pqid></control><display><type>article</type><title>Numerical simulation of continuous laser microdrilling of ultrathick aluminum honeycomb sandwich panels</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chang, Yubo ; E, Shiju ; Sun, Aixi ; Cai, Jiancheng ; Qin, Yuzhou ; Kou, Jianlong ; Wang, Chengwu ; Zhang, Yu ; Xu, Zisheng</creator><creatorcontrib>Chang, Yubo ; E, Shiju ; Sun, Aixi ; Cai, Jiancheng ; Qin, Yuzhou ; Kou, Jianlong ; Wang, Chengwu ; Zhang, Yu ; Xu, Zisheng</creatorcontrib><description>Ultrathick aluminum honeycomb sandwich panels, which have high strength/stiffness-to-weight ratio, have been applied widely in satellites and other aerospace fields. However, the ultrathick aluminum honeycomb sandwich panels are difficult to be machined. In many cases, laser ablation is used for the microdrilling demand of aluminum honeycomb sandwich panels. The heat flux density is the key factor during laser machining, and the microdrilling parameters, including defocusing amount and incident angle, can lead to the change of the temperature fields of upper panel, cell walls, and lower panel. To study the microdrilling process quantitatively, the finite element model (FEM) is performed to evaluate the temperature evolution of aluminum honeycomb sandwich panels during continuous laser irradiation. Moreover, continuous laser microdrilling characteristics of upper panel, cell walls and lower panel are discussed via numerical simulation. The relative errors with respect to experimental results are in range of 8% showing that simulation results of laser microdrilling are reasonable. Thus, the mechanism of laser microdrilling revealed in this study can be significant for improving the processing quality of aluminum honeycomb sandwich panels.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-10802-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aluminum ; CAE) and Design ; Computer simulation ; Computer-Aided Engineering (CAD ; Defocusing ; Engineering ; Finite element method ; Flux density ; Heat flux ; Honeycomb cores ; Industrial and Production Engineering ; Laser ablation ; Laser machining ; Lasers ; Mathematical models ; Mechanical Engineering ; Media Management ; Microdrilling ; Original Article ; Raw materials ; Sandwich panels ; Simulation ; Stiffness</subject><ispartof>International journal of advanced manufacturing technology, 2023-03, Vol.125 (3-4), p.1689-1700</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-89bfc823917a5712e09e59f355e074c1ee13992861711dcb6c5d6fb04756183a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-10802-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-10802-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Chang, Yubo</creatorcontrib><creatorcontrib>E, Shiju</creatorcontrib><creatorcontrib>Sun, Aixi</creatorcontrib><creatorcontrib>Cai, Jiancheng</creatorcontrib><creatorcontrib>Qin, Yuzhou</creatorcontrib><creatorcontrib>Kou, Jianlong</creatorcontrib><creatorcontrib>Wang, Chengwu</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Xu, Zisheng</creatorcontrib><title>Numerical simulation of continuous laser microdrilling of ultrathick aluminum honeycomb sandwich panels</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Ultrathick aluminum honeycomb sandwich panels, which have high strength/stiffness-to-weight ratio, have been applied widely in satellites and other aerospace fields. However, the ultrathick aluminum honeycomb sandwich panels are difficult to be machined. In many cases, laser ablation is used for the microdrilling demand of aluminum honeycomb sandwich panels. The heat flux density is the key factor during laser machining, and the microdrilling parameters, including defocusing amount and incident angle, can lead to the change of the temperature fields of upper panel, cell walls, and lower panel. To study the microdrilling process quantitatively, the finite element model (FEM) is performed to evaluate the temperature evolution of aluminum honeycomb sandwich panels during continuous laser irradiation. Moreover, continuous laser microdrilling characteristics of upper panel, cell walls and lower panel are discussed via numerical simulation. The relative errors with respect to experimental results are in range of 8% showing that simulation results of laser microdrilling are reasonable. Thus, the mechanism of laser microdrilling revealed in this study can be significant for improving the processing quality of aluminum honeycomb sandwich panels.</description><subject>Aluminum</subject><subject>CAE) and Design</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Defocusing</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Heat flux</subject><subject>Honeycomb cores</subject><subject>Industrial and Production Engineering</subject><subject>Laser ablation</subject><subject>Laser machining</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Microdrilling</subject><subject>Original Article</subject><subject>Raw materials</subject><subject>Sandwich panels</subject><subject>Simulation</subject><subject>Stiffness</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5gsMQfes5vYGVHFl1TBArPlOE7r4tjFToT496QUiY3pLefeq3cIuUS4RgBxkwFQQAGMFQgSWMGOyAwXnBccsDwmM2CVLLio5Ck5y3k74RVWckbWz2NvkzPa0-z60evBxUBjR00MgwtjHDP1OttEe2dSbJPz3oX1nhj9kPSwceadaj_2E9zTTQz2y8S-oVmH9tOZDd3pYH0-Jyed9tle_N45ebu_e10-FquXh6fl7aowTMBQyLrpjGS8RqFLgcxCbcu642VpQSwMWou8rpmsUCC2pqlM2VZdAwtRVii55nNydejdpfgx2jyobRxTmCYVE0JgKSXIiWIHanop52Q7tUuu1-lLIai9UHUQqiah6keoYlOIH0J5gsPapr_qf1LftCB5-w</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Chang, Yubo</creator><creator>E, Shiju</creator><creator>Sun, Aixi</creator><creator>Cai, Jiancheng</creator><creator>Qin, Yuzhou</creator><creator>Kou, Jianlong</creator><creator>Wang, Chengwu</creator><creator>Zhang, Yu</creator><creator>Xu, Zisheng</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230301</creationdate><title>Numerical simulation of continuous laser microdrilling of ultrathick aluminum honeycomb sandwich panels</title><author>Chang, Yubo ; E, Shiju ; Sun, Aixi ; Cai, Jiancheng ; Qin, Yuzhou ; Kou, Jianlong ; Wang, Chengwu ; Zhang, Yu ; Xu, Zisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-89bfc823917a5712e09e59f355e074c1ee13992861711dcb6c5d6fb04756183a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>CAE) and Design</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Defocusing</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Heat flux</topic><topic>Honeycomb cores</topic><topic>Industrial and Production Engineering</topic><topic>Laser ablation</topic><topic>Laser machining</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Microdrilling</topic><topic>Original Article</topic><topic>Raw materials</topic><topic>Sandwich panels</topic><topic>Simulation</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Yubo</creatorcontrib><creatorcontrib>E, Shiju</creatorcontrib><creatorcontrib>Sun, Aixi</creatorcontrib><creatorcontrib>Cai, Jiancheng</creatorcontrib><creatorcontrib>Qin, Yuzhou</creatorcontrib><creatorcontrib>Kou, Jianlong</creatorcontrib><creatorcontrib>Wang, Chengwu</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Xu, Zisheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Yubo</au><au>E, Shiju</au><au>Sun, Aixi</au><au>Cai, Jiancheng</au><au>Qin, Yuzhou</au><au>Kou, Jianlong</au><au>Wang, Chengwu</au><au>Zhang, Yu</au><au>Xu, Zisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of continuous laser microdrilling of ultrathick aluminum honeycomb sandwich panels</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>125</volume><issue>3-4</issue><spage>1689</spage><epage>1700</epage><pages>1689-1700</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Ultrathick aluminum honeycomb sandwich panels, which have high strength/stiffness-to-weight ratio, have been applied widely in satellites and other aerospace fields. However, the ultrathick aluminum honeycomb sandwich panels are difficult to be machined. In many cases, laser ablation is used for the microdrilling demand of aluminum honeycomb sandwich panels. The heat flux density is the key factor during laser machining, and the microdrilling parameters, including defocusing amount and incident angle, can lead to the change of the temperature fields of upper panel, cell walls, and lower panel. To study the microdrilling process quantitatively, the finite element model (FEM) is performed to evaluate the temperature evolution of aluminum honeycomb sandwich panels during continuous laser irradiation. Moreover, continuous laser microdrilling characteristics of upper panel, cell walls and lower panel are discussed via numerical simulation. The relative errors with respect to experimental results are in range of 8% showing that simulation results of laser microdrilling are reasonable. Thus, the mechanism of laser microdrilling revealed in this study can be significant for improving the processing quality of aluminum honeycomb sandwich panels.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-10802-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2023-03, Vol.125 (3-4), p.1689-1700 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2777158808 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum CAE) and Design Computer simulation Computer-Aided Engineering (CAD Defocusing Engineering Finite element method Flux density Heat flux Honeycomb cores Industrial and Production Engineering Laser ablation Laser machining Lasers Mathematical models Mechanical Engineering Media Management Microdrilling Original Article Raw materials Sandwich panels Simulation Stiffness |
title | Numerical simulation of continuous laser microdrilling of ultrathick aluminum honeycomb sandwich panels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20continuous%20laser%20microdrilling%20of%20ultrathick%20aluminum%20honeycomb%20sandwich%20panels&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Chang,%20Yubo&rft.date=2023-03-01&rft.volume=125&rft.issue=3-4&rft.spage=1689&rft.epage=1700&rft.pages=1689-1700&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-10802-2&rft_dat=%3Cproquest_cross%3E2777158808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777158808&rft_id=info:pmid/&rfr_iscdi=true |