Hybrid uncertainty analysis and optimisation based on probability box for bus powertrain mounting system
In engineering practice, the bus powertrain mounting system (BPMS) may have both epistemic and aleatory uncertainty under the influence of manufacturing, measurement, and assembly errors. The hybrid uncertainty in BPMS may result in over-design or insufficient design. Therefore, the probability box...
Gespeichert in:
Veröffentlicht in: | Journal of engineering design 2023-01, Vol.34 (1), p.23-54 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Journal of engineering design |
container_volume | 34 |
creator | Zheng, Zhengzhong Bu, Xiangjian Hou, Liang Wang, Shaojie |
description | In engineering practice, the bus powertrain mounting system (BPMS) may have both epistemic and aleatory uncertainty under the influence of manufacturing, measurement, and assembly errors. The hybrid uncertainty in BPMS may result in over-design or insufficient design. Therefore, the probability box (p-box) model, which can handle both aleatory and epistemic variables, is introduced into the uncertainty analysis of BPMS. Considering the elastic connection between the compressor and powertrain, a 12-degree-of-freedom dynamic model is constructed to calculate the inherent characteristic of BPMS. A rejection sampling method based on the fast envelope function (RSMBFEF) is proposed to propagate the hybrid uncertainties. Then double-loop Monte Carlo method is used to be compared with RSMBFEF. To reduce the number of uncertainty analyses, a two-step uncertainty optimisation method is proposed. Finally, the proposed method's efficacy and accuracy are verified through a numerical case. The applicability of the p-box model is illustrated by comparing it with the BPMS model with only pure aleatory or pure interval variables. |
doi_str_mv | 10.1080/09544828.2022.2164441 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777156808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777156808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-6781467974b7a42b7207a64672ad1ca27b6bc1d328d7c8203e4790856a126e943</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKc_QQj43JmkaZK9KUOdMPBFn0PSpprRJjVJmf33pmy--nQvl-8c7jkA3GK0wkige7SuKBVErAgiZEUwo5TiM7DAlLECi5Kfg8XMFDN0Ca5i3COUhaRagK_tpINt4OhqE5KyLk1QOdVN0ca8NNAPyfY2qmS9g1pFk08ODsFrpW1nM679D2x9gHqMcPCHbBOyD-z96JJ1nzBOMZn-Gly0qovm5jSX4OP56X2zLXZvL6-bx11Rl6VIBeMiv83XnGquKNGcIK5YvhDV4FoRrpmucVMS0fBaEFQaytdIVExhwsyalktwd_TNL36PJia592PIiaIknHNcMYFEpqojVQcfYzCtHILtVZgkRnIuVf6VKudS5anUrHs46qzLkXt18KFrZFJT50MblKttlOX_Fr9ZOX7R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777156808</pqid></control><display><type>article</type><title>Hybrid uncertainty analysis and optimisation based on probability box for bus powertrain mounting system</title><source>EBSCOhost Business Source Complete</source><creator>Zheng, Zhengzhong ; Bu, Xiangjian ; Hou, Liang ; Wang, Shaojie</creator><creatorcontrib>Zheng, Zhengzhong ; Bu, Xiangjian ; Hou, Liang ; Wang, Shaojie</creatorcontrib><description>In engineering practice, the bus powertrain mounting system (BPMS) may have both epistemic and aleatory uncertainty under the influence of manufacturing, measurement, and assembly errors. The hybrid uncertainty in BPMS may result in over-design or insufficient design. Therefore, the probability box (p-box) model, which can handle both aleatory and epistemic variables, is introduced into the uncertainty analysis of BPMS. Considering the elastic connection between the compressor and powertrain, a 12-degree-of-freedom dynamic model is constructed to calculate the inherent characteristic of BPMS. A rejection sampling method based on the fast envelope function (RSMBFEF) is proposed to propagate the hybrid uncertainties. Then double-loop Monte Carlo method is used to be compared with RSMBFEF. To reduce the number of uncertainty analyses, a two-step uncertainty optimisation method is proposed. Finally, the proposed method's efficacy and accuracy are verified through a numerical case. The applicability of the p-box model is illustrated by comparing it with the BPMS model with only pure aleatory or pure interval variables.</description><identifier>ISSN: 0954-4828</identifier><identifier>EISSN: 1466-1837</identifier><identifier>DOI: 10.1080/09544828.2022.2164441</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>bus powertrain mounting system ; Dynamic models ; fast envelope function ; Hybrid uncertainty analysis ; Monte Carlo simulation ; Optimization ; p-box ; Powertrain ; rejection sampling ; Uncertainty analysis</subject><ispartof>Journal of engineering design, 2023-01, Vol.34 (1), p.23-54</ispartof><rights>2023 Informa UK Limited, trading as Taylor & Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-6781467974b7a42b7207a64672ad1ca27b6bc1d328d7c8203e4790856a126e943</citedby><cites>FETCH-LOGICAL-c338t-6781467974b7a42b7207a64672ad1ca27b6bc1d328d7c8203e4790856a126e943</cites><orcidid>0000-0002-8271-9208 ; 0000-0003-3870-1876 ; 0000-0002-1554-7178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Zhengzhong</creatorcontrib><creatorcontrib>Bu, Xiangjian</creatorcontrib><creatorcontrib>Hou, Liang</creatorcontrib><creatorcontrib>Wang, Shaojie</creatorcontrib><title>Hybrid uncertainty analysis and optimisation based on probability box for bus powertrain mounting system</title><title>Journal of engineering design</title><description>In engineering practice, the bus powertrain mounting system (BPMS) may have both epistemic and aleatory uncertainty under the influence of manufacturing, measurement, and assembly errors. The hybrid uncertainty in BPMS may result in over-design or insufficient design. Therefore, the probability box (p-box) model, which can handle both aleatory and epistemic variables, is introduced into the uncertainty analysis of BPMS. Considering the elastic connection between the compressor and powertrain, a 12-degree-of-freedom dynamic model is constructed to calculate the inherent characteristic of BPMS. A rejection sampling method based on the fast envelope function (RSMBFEF) is proposed to propagate the hybrid uncertainties. Then double-loop Monte Carlo method is used to be compared with RSMBFEF. To reduce the number of uncertainty analyses, a two-step uncertainty optimisation method is proposed. Finally, the proposed method's efficacy and accuracy are verified through a numerical case. The applicability of the p-box model is illustrated by comparing it with the BPMS model with only pure aleatory or pure interval variables.</description><subject>bus powertrain mounting system</subject><subject>Dynamic models</subject><subject>fast envelope function</subject><subject>Hybrid uncertainty analysis</subject><subject>Monte Carlo simulation</subject><subject>Optimization</subject><subject>p-box</subject><subject>Powertrain</subject><subject>rejection sampling</subject><subject>Uncertainty analysis</subject><issn>0954-4828</issn><issn>1466-1837</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKc_QQj43JmkaZK9KUOdMPBFn0PSpprRJjVJmf33pmy--nQvl-8c7jkA3GK0wkige7SuKBVErAgiZEUwo5TiM7DAlLECi5Kfg8XMFDN0Ca5i3COUhaRagK_tpINt4OhqE5KyLk1QOdVN0ca8NNAPyfY2qmS9g1pFk08ODsFrpW1nM679D2x9gHqMcPCHbBOyD-z96JJ1nzBOMZn-Gly0qovm5jSX4OP56X2zLXZvL6-bx11Rl6VIBeMiv83XnGquKNGcIK5YvhDV4FoRrpmucVMS0fBaEFQaytdIVExhwsyalktwd_TNL36PJia592PIiaIknHNcMYFEpqojVQcfYzCtHILtVZgkRnIuVf6VKudS5anUrHs46qzLkXt18KFrZFJT50MblKttlOX_Fr9ZOX7R</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Zheng, Zhengzhong</creator><creator>Bu, Xiangjian</creator><creator>Hou, Liang</creator><creator>Wang, Shaojie</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-8271-9208</orcidid><orcidid>https://orcid.org/0000-0003-3870-1876</orcidid><orcidid>https://orcid.org/0000-0002-1554-7178</orcidid></search><sort><creationdate>20230102</creationdate><title>Hybrid uncertainty analysis and optimisation based on probability box for bus powertrain mounting system</title><author>Zheng, Zhengzhong ; Bu, Xiangjian ; Hou, Liang ; Wang, Shaojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-6781467974b7a42b7207a64672ad1ca27b6bc1d328d7c8203e4790856a126e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bus powertrain mounting system</topic><topic>Dynamic models</topic><topic>fast envelope function</topic><topic>Hybrid uncertainty analysis</topic><topic>Monte Carlo simulation</topic><topic>Optimization</topic><topic>p-box</topic><topic>Powertrain</topic><topic>rejection sampling</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Zhengzhong</creatorcontrib><creatorcontrib>Bu, Xiangjian</creatorcontrib><creatorcontrib>Hou, Liang</creatorcontrib><creatorcontrib>Wang, Shaojie</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of engineering design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Zhengzhong</au><au>Bu, Xiangjian</au><au>Hou, Liang</au><au>Wang, Shaojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid uncertainty analysis and optimisation based on probability box for bus powertrain mounting system</atitle><jtitle>Journal of engineering design</jtitle><date>2023-01-02</date><risdate>2023</risdate><volume>34</volume><issue>1</issue><spage>23</spage><epage>54</epage><pages>23-54</pages><issn>0954-4828</issn><eissn>1466-1837</eissn><abstract>In engineering practice, the bus powertrain mounting system (BPMS) may have both epistemic and aleatory uncertainty under the influence of manufacturing, measurement, and assembly errors. The hybrid uncertainty in BPMS may result in over-design or insufficient design. Therefore, the probability box (p-box) model, which can handle both aleatory and epistemic variables, is introduced into the uncertainty analysis of BPMS. Considering the elastic connection between the compressor and powertrain, a 12-degree-of-freedom dynamic model is constructed to calculate the inherent characteristic of BPMS. A rejection sampling method based on the fast envelope function (RSMBFEF) is proposed to propagate the hybrid uncertainties. Then double-loop Monte Carlo method is used to be compared with RSMBFEF. To reduce the number of uncertainty analyses, a two-step uncertainty optimisation method is proposed. Finally, the proposed method's efficacy and accuracy are verified through a numerical case. The applicability of the p-box model is illustrated by comparing it with the BPMS model with only pure aleatory or pure interval variables.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/09544828.2022.2164441</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-8271-9208</orcidid><orcidid>https://orcid.org/0000-0003-3870-1876</orcidid><orcidid>https://orcid.org/0000-0002-1554-7178</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4828 |
ispartof | Journal of engineering design, 2023-01, Vol.34 (1), p.23-54 |
issn | 0954-4828 1466-1837 |
language | eng |
recordid | cdi_proquest_journals_2777156808 |
source | EBSCOhost Business Source Complete |
subjects | bus powertrain mounting system Dynamic models fast envelope function Hybrid uncertainty analysis Monte Carlo simulation Optimization p-box Powertrain rejection sampling Uncertainty analysis |
title | Hybrid uncertainty analysis and optimisation based on probability box for bus powertrain mounting system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20uncertainty%20analysis%20and%20optimisation%20based%20on%20probability%20box%20for%20bus%20powertrain%20mounting%20system&rft.jtitle=Journal%20of%20engineering%20design&rft.au=Zheng,%20Zhengzhong&rft.date=2023-01-02&rft.volume=34&rft.issue=1&rft.spage=23&rft.epage=54&rft.pages=23-54&rft.issn=0954-4828&rft.eissn=1466-1837&rft_id=info:doi/10.1080/09544828.2022.2164441&rft_dat=%3Cproquest_cross%3E2777156808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777156808&rft_id=info:pmid/&rfr_iscdi=true |