Hybrid uncertainty analysis and optimisation based on probability box for bus powertrain mounting system

In engineering practice, the bus powertrain mounting system (BPMS) may have both epistemic and aleatory uncertainty under the influence of manufacturing, measurement, and assembly errors. The hybrid uncertainty in BPMS may result in over-design or insufficient design. Therefore, the probability box...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering design 2023-01, Vol.34 (1), p.23-54
Hauptverfasser: Zheng, Zhengzhong, Bu, Xiangjian, Hou, Liang, Wang, Shaojie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 1
container_start_page 23
container_title Journal of engineering design
container_volume 34
creator Zheng, Zhengzhong
Bu, Xiangjian
Hou, Liang
Wang, Shaojie
description In engineering practice, the bus powertrain mounting system (BPMS) may have both epistemic and aleatory uncertainty under the influence of manufacturing, measurement, and assembly errors. The hybrid uncertainty in BPMS may result in over-design or insufficient design. Therefore, the probability box (p-box) model, which can handle both aleatory and epistemic variables, is introduced into the uncertainty analysis of BPMS. Considering the elastic connection between the compressor and powertrain, a 12-degree-of-freedom dynamic model is constructed to calculate the inherent characteristic of BPMS. A rejection sampling method based on the fast envelope function (RSMBFEF) is proposed to propagate the hybrid uncertainties. Then double-loop Monte Carlo method is used to be compared with RSMBFEF. To reduce the number of uncertainty analyses, a two-step uncertainty optimisation method is proposed. Finally, the proposed method's efficacy and accuracy are verified through a numerical case. The applicability of the p-box model is illustrated by comparing it with the BPMS model with only pure aleatory or pure interval variables.
doi_str_mv 10.1080/09544828.2022.2164441
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777156808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777156808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-6781467974b7a42b7207a64672ad1ca27b6bc1d328d7c8203e4790856a126e943</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKc_QQj43JmkaZK9KUOdMPBFn0PSpprRJjVJmf33pmy--nQvl-8c7jkA3GK0wkige7SuKBVErAgiZEUwo5TiM7DAlLECi5Kfg8XMFDN0Ca5i3COUhaRagK_tpINt4OhqE5KyLk1QOdVN0ca8NNAPyfY2qmS9g1pFk08ODsFrpW1nM679D2x9gHqMcPCHbBOyD-z96JJ1nzBOMZn-Gly0qovm5jSX4OP56X2zLXZvL6-bx11Rl6VIBeMiv83XnGquKNGcIK5YvhDV4FoRrpmucVMS0fBaEFQaytdIVExhwsyalktwd_TNL36PJia592PIiaIknHNcMYFEpqojVQcfYzCtHILtVZgkRnIuVf6VKudS5anUrHs46qzLkXt18KFrZFJT50MblKttlOX_Fr9ZOX7R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777156808</pqid></control><display><type>article</type><title>Hybrid uncertainty analysis and optimisation based on probability box for bus powertrain mounting system</title><source>EBSCOhost Business Source Complete</source><creator>Zheng, Zhengzhong ; Bu, Xiangjian ; Hou, Liang ; Wang, Shaojie</creator><creatorcontrib>Zheng, Zhengzhong ; Bu, Xiangjian ; Hou, Liang ; Wang, Shaojie</creatorcontrib><description>In engineering practice, the bus powertrain mounting system (BPMS) may have both epistemic and aleatory uncertainty under the influence of manufacturing, measurement, and assembly errors. The hybrid uncertainty in BPMS may result in over-design or insufficient design. Therefore, the probability box (p-box) model, which can handle both aleatory and epistemic variables, is introduced into the uncertainty analysis of BPMS. Considering the elastic connection between the compressor and powertrain, a 12-degree-of-freedom dynamic model is constructed to calculate the inherent characteristic of BPMS. A rejection sampling method based on the fast envelope function (RSMBFEF) is proposed to propagate the hybrid uncertainties. Then double-loop Monte Carlo method is used to be compared with RSMBFEF. To reduce the number of uncertainty analyses, a two-step uncertainty optimisation method is proposed. Finally, the proposed method's efficacy and accuracy are verified through a numerical case. The applicability of the p-box model is illustrated by comparing it with the BPMS model with only pure aleatory or pure interval variables.</description><identifier>ISSN: 0954-4828</identifier><identifier>EISSN: 1466-1837</identifier><identifier>DOI: 10.1080/09544828.2022.2164441</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>bus powertrain mounting system ; Dynamic models ; fast envelope function ; Hybrid uncertainty analysis ; Monte Carlo simulation ; Optimization ; p-box ; Powertrain ; rejection sampling ; Uncertainty analysis</subject><ispartof>Journal of engineering design, 2023-01, Vol.34 (1), p.23-54</ispartof><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-6781467974b7a42b7207a64672ad1ca27b6bc1d328d7c8203e4790856a126e943</citedby><cites>FETCH-LOGICAL-c338t-6781467974b7a42b7207a64672ad1ca27b6bc1d328d7c8203e4790856a126e943</cites><orcidid>0000-0002-8271-9208 ; 0000-0003-3870-1876 ; 0000-0002-1554-7178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Zhengzhong</creatorcontrib><creatorcontrib>Bu, Xiangjian</creatorcontrib><creatorcontrib>Hou, Liang</creatorcontrib><creatorcontrib>Wang, Shaojie</creatorcontrib><title>Hybrid uncertainty analysis and optimisation based on probability box for bus powertrain mounting system</title><title>Journal of engineering design</title><description>In engineering practice, the bus powertrain mounting system (BPMS) may have both epistemic and aleatory uncertainty under the influence of manufacturing, measurement, and assembly errors. The hybrid uncertainty in BPMS may result in over-design or insufficient design. Therefore, the probability box (p-box) model, which can handle both aleatory and epistemic variables, is introduced into the uncertainty analysis of BPMS. Considering the elastic connection between the compressor and powertrain, a 12-degree-of-freedom dynamic model is constructed to calculate the inherent characteristic of BPMS. A rejection sampling method based on the fast envelope function (RSMBFEF) is proposed to propagate the hybrid uncertainties. Then double-loop Monte Carlo method is used to be compared with RSMBFEF. To reduce the number of uncertainty analyses, a two-step uncertainty optimisation method is proposed. Finally, the proposed method's efficacy and accuracy are verified through a numerical case. The applicability of the p-box model is illustrated by comparing it with the BPMS model with only pure aleatory or pure interval variables.</description><subject>bus powertrain mounting system</subject><subject>Dynamic models</subject><subject>fast envelope function</subject><subject>Hybrid uncertainty analysis</subject><subject>Monte Carlo simulation</subject><subject>Optimization</subject><subject>p-box</subject><subject>Powertrain</subject><subject>rejection sampling</subject><subject>Uncertainty analysis</subject><issn>0954-4828</issn><issn>1466-1837</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKc_QQj43JmkaZK9KUOdMPBFn0PSpprRJjVJmf33pmy--nQvl-8c7jkA3GK0wkige7SuKBVErAgiZEUwo5TiM7DAlLECi5Kfg8XMFDN0Ca5i3COUhaRagK_tpINt4OhqE5KyLk1QOdVN0ca8NNAPyfY2qmS9g1pFk08ODsFrpW1nM679D2x9gHqMcPCHbBOyD-z96JJ1nzBOMZn-Gly0qovm5jSX4OP56X2zLXZvL6-bx11Rl6VIBeMiv83XnGquKNGcIK5YvhDV4FoRrpmucVMS0fBaEFQaytdIVExhwsyalktwd_TNL36PJia592PIiaIknHNcMYFEpqojVQcfYzCtHILtVZgkRnIuVf6VKudS5anUrHs46qzLkXt18KFrZFJT50MblKttlOX_Fr9ZOX7R</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Zheng, Zhengzhong</creator><creator>Bu, Xiangjian</creator><creator>Hou, Liang</creator><creator>Wang, Shaojie</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-8271-9208</orcidid><orcidid>https://orcid.org/0000-0003-3870-1876</orcidid><orcidid>https://orcid.org/0000-0002-1554-7178</orcidid></search><sort><creationdate>20230102</creationdate><title>Hybrid uncertainty analysis and optimisation based on probability box for bus powertrain mounting system</title><author>Zheng, Zhengzhong ; Bu, Xiangjian ; Hou, Liang ; Wang, Shaojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-6781467974b7a42b7207a64672ad1ca27b6bc1d328d7c8203e4790856a126e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bus powertrain mounting system</topic><topic>Dynamic models</topic><topic>fast envelope function</topic><topic>Hybrid uncertainty analysis</topic><topic>Monte Carlo simulation</topic><topic>Optimization</topic><topic>p-box</topic><topic>Powertrain</topic><topic>rejection sampling</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Zhengzhong</creatorcontrib><creatorcontrib>Bu, Xiangjian</creatorcontrib><creatorcontrib>Hou, Liang</creatorcontrib><creatorcontrib>Wang, Shaojie</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of engineering design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Zhengzhong</au><au>Bu, Xiangjian</au><au>Hou, Liang</au><au>Wang, Shaojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid uncertainty analysis and optimisation based on probability box for bus powertrain mounting system</atitle><jtitle>Journal of engineering design</jtitle><date>2023-01-02</date><risdate>2023</risdate><volume>34</volume><issue>1</issue><spage>23</spage><epage>54</epage><pages>23-54</pages><issn>0954-4828</issn><eissn>1466-1837</eissn><abstract>In engineering practice, the bus powertrain mounting system (BPMS) may have both epistemic and aleatory uncertainty under the influence of manufacturing, measurement, and assembly errors. The hybrid uncertainty in BPMS may result in over-design or insufficient design. Therefore, the probability box (p-box) model, which can handle both aleatory and epistemic variables, is introduced into the uncertainty analysis of BPMS. Considering the elastic connection between the compressor and powertrain, a 12-degree-of-freedom dynamic model is constructed to calculate the inherent characteristic of BPMS. A rejection sampling method based on the fast envelope function (RSMBFEF) is proposed to propagate the hybrid uncertainties. Then double-loop Monte Carlo method is used to be compared with RSMBFEF. To reduce the number of uncertainty analyses, a two-step uncertainty optimisation method is proposed. Finally, the proposed method's efficacy and accuracy are verified through a numerical case. The applicability of the p-box model is illustrated by comparing it with the BPMS model with only pure aleatory or pure interval variables.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/09544828.2022.2164441</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-8271-9208</orcidid><orcidid>https://orcid.org/0000-0003-3870-1876</orcidid><orcidid>https://orcid.org/0000-0002-1554-7178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4828
ispartof Journal of engineering design, 2023-01, Vol.34 (1), p.23-54
issn 0954-4828
1466-1837
language eng
recordid cdi_proquest_journals_2777156808
source EBSCOhost Business Source Complete
subjects bus powertrain mounting system
Dynamic models
fast envelope function
Hybrid uncertainty analysis
Monte Carlo simulation
Optimization
p-box
Powertrain
rejection sampling
Uncertainty analysis
title Hybrid uncertainty analysis and optimisation based on probability box for bus powertrain mounting system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20uncertainty%20analysis%20and%20optimisation%20based%20on%20probability%20box%20for%20bus%20powertrain%20mounting%20system&rft.jtitle=Journal%20of%20engineering%20design&rft.au=Zheng,%20Zhengzhong&rft.date=2023-01-02&rft.volume=34&rft.issue=1&rft.spage=23&rft.epage=54&rft.pages=23-54&rft.issn=0954-4828&rft.eissn=1466-1837&rft_id=info:doi/10.1080/09544828.2022.2164441&rft_dat=%3Cproquest_cross%3E2777156808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777156808&rft_id=info:pmid/&rfr_iscdi=true