Effect of Cyano Substitution on Non‐Fullerene Acceptor for Near‐Infrared Organic Photodetectors above 1000 nm

Near‐infrared organic photodetectors (NIR OPDs) comprising ultra‐narrow bandgap non‐fullerene acceptors (NFA, over 1000 nm) typically exhibit high dark current density under applied reverse bias. Therefore, suppression of dark current density is crucial to achieve high‐performance of such NIR OPDs....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-02, Vol.33 (8), p.n/a
Hauptverfasser: Ha, Jong‐Woon, Eun, Hyeong Ju, Park, Byoungwook, Ahn, Hyungju, Hwang, Dong Ryeol, Shim, Yeong Seok, Heo, Junseok, Lee, Changjin, Yoon, Sung Cheol, Kim, Jong H., Ko, Seo‐Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Advanced functional materials
container_volume 33
creator Ha, Jong‐Woon
Eun, Hyeong Ju
Park, Byoungwook
Ahn, Hyungju
Hwang, Dong Ryeol
Shim, Yeong Seok
Heo, Junseok
Lee, Changjin
Yoon, Sung Cheol
Kim, Jong H.
Ko, Seo‐Jin
description Near‐infrared organic photodetectors (NIR OPDs) comprising ultra‐narrow bandgap non‐fullerene acceptors (NFA, over 1000 nm) typically exhibit high dark current density under applied reverse bias. Therefore, suppression of dark current density is crucial to achieve high‐performance of such NIR OPDs. Herein, cyano (CN) with a strong electron‐withdrawing property is introduced into alkoxy thiophene as a π‐bridge to adjust its optoelectronic characteristics, and the correlation between dark current density and charge injection barrier is investigated. Compared with their motivated NFA (COTH), the novel CN‐substituted NFAs, COTCN and COTCN2, exhibited deeper‐lying highest occupied molecular orbital energy levels and narrower optical bandgap (
doi_str_mv 10.1002/adfm.202211486
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777148716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777148716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-857be107382b834e5b06bc83c2083a0e4e9a1b0683ac610c72ab369f7030396b3</originalsourceid><addsrcrecordid>eNqFUM1KAzEQDqJgrV49Bzxvzc822T2W2mqhVkEFbyGbTnTLNqnZXaU3H8FH8Fl8FJ_ElEo9CjPM3_fNDB9Cp5T0KCHsXM_tsscIY5SmmdhDHSqoSDhh2f4up4-H6KiuF4RQKXnaQWFkLZgGe4uHa-08vmuLuimbtim9w9Fm3n2_f4zbqoIADvDAGFg1PmAbfQY6xOnE2aADzPFNeNKuNPj22Td-Dk3c7EONdeFfAccnydenWx6jA6urGk5-Yxc9jEf3w6tkenM5GQ6mieF9KZKsLwugRPKMFRlPoV8QUZiMG0YyrgmkkGsae7EwghIjmS64yK0knPBcFLyLzrZ7V8G_tFA3auHb4OJJxaSUUSRJRUT1tigTfF0HsGoVyqUOa0WJ2uiqNrqqna6RkG8Jb2UF63_QanAxvv7j_gC-dn5N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777148716</pqid></control><display><type>article</type><title>Effect of Cyano Substitution on Non‐Fullerene Acceptor for Near‐Infrared Organic Photodetectors above 1000 nm</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ha, Jong‐Woon ; Eun, Hyeong Ju ; Park, Byoungwook ; Ahn, Hyungju ; Hwang, Dong Ryeol ; Shim, Yeong Seok ; Heo, Junseok ; Lee, Changjin ; Yoon, Sung Cheol ; Kim, Jong H. ; Ko, Seo‐Jin</creator><creatorcontrib>Ha, Jong‐Woon ; Eun, Hyeong Ju ; Park, Byoungwook ; Ahn, Hyungju ; Hwang, Dong Ryeol ; Shim, Yeong Seok ; Heo, Junseok ; Lee, Changjin ; Yoon, Sung Cheol ; Kim, Jong H. ; Ko, Seo‐Jin</creatorcontrib><description>Near‐infrared organic photodetectors (NIR OPDs) comprising ultra‐narrow bandgap non‐fullerene acceptors (NFA, over 1000 nm) typically exhibit high dark current density under applied reverse bias. Therefore, suppression of dark current density is crucial to achieve high‐performance of such NIR OPDs. Herein, cyano (CN) with a strong electron‐withdrawing property is introduced into alkoxy thiophene as a π‐bridge to adjust its optoelectronic characteristics, and the correlation between dark current density and charge injection barrier is investigated. Compared with their motivated NFA (COTH), the novel CN‐substituted NFAs, COTCN and COTCN2, exhibited deeper‐lying highest occupied molecular orbital energy levels and narrower optical bandgap (&lt;1.10 eV), owing to the strong inductive and resonance effect of CN. The dark current and total noise currents are minimized as the number of substituted CN increases because of the larger hole injection barrier. Consequently, PTB7‐Th:COTCN2 exhibited the best shot‐noise limited detectivity (D*sh, 1.18 × 1012 Jones) and total noise detectivity (D*n, 1.33 × 1011 Jones) compared with those of PTB7‐Th:COTH (D*sh, 2.47 × 1011 Jones and D*n, 1.96 × 1010 Jones). The novel CN‐substituted NFAs, COTCN, and COTCN2, exhibited deeper‐lying highest occupied molecular orbital energy levels and narrower optical bandgap (&lt;1.10 eV), owing to the strong inductive and resonance effect of CN. Consequently, NIR OPDs based on PTB7‐Th:COTCN shown best specific detectivity beyond 1000 nm owing to their minimized total noise current density and high responsivity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202211486</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Charge injection ; CN substitutions ; Current density ; Dark current ; Energy gap ; Energy levels ; Fullerenes ; low dark current densities ; Materials science ; Molecular orbitals ; Near infrared radiation ; near‐infrared ; non‐fullerene acceptors ; Optoelectronics ; Photometers ; Substitutes ; ultra narrow bandgaps</subject><ispartof>Advanced functional materials, 2023-02, Vol.33 (8), p.n/a</ispartof><rights>2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-857be107382b834e5b06bc83c2083a0e4e9a1b0683ac610c72ab369f7030396b3</citedby><cites>FETCH-LOGICAL-c3576-857be107382b834e5b06bc83c2083a0e4e9a1b0683ac610c72ab369f7030396b3</cites><orcidid>0000-0001-6782-2154 ; 0000-0002-5429-1216 ; 0000-0002-8125-6141 ; 0000-0001-8402-2140 ; 0000-0002-1069-8858 ; 0000-0002-0575-8748 ; 0000-0002-6222-6916 ; 0000-0003-1335-0598 ; 0000-0002-4112-526X ; 0000-0003-3753-7947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202211486$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202211486$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ha, Jong‐Woon</creatorcontrib><creatorcontrib>Eun, Hyeong Ju</creatorcontrib><creatorcontrib>Park, Byoungwook</creatorcontrib><creatorcontrib>Ahn, Hyungju</creatorcontrib><creatorcontrib>Hwang, Dong Ryeol</creatorcontrib><creatorcontrib>Shim, Yeong Seok</creatorcontrib><creatorcontrib>Heo, Junseok</creatorcontrib><creatorcontrib>Lee, Changjin</creatorcontrib><creatorcontrib>Yoon, Sung Cheol</creatorcontrib><creatorcontrib>Kim, Jong H.</creatorcontrib><creatorcontrib>Ko, Seo‐Jin</creatorcontrib><title>Effect of Cyano Substitution on Non‐Fullerene Acceptor for Near‐Infrared Organic Photodetectors above 1000 nm</title><title>Advanced functional materials</title><description>Near‐infrared organic photodetectors (NIR OPDs) comprising ultra‐narrow bandgap non‐fullerene acceptors (NFA, over 1000 nm) typically exhibit high dark current density under applied reverse bias. Therefore, suppression of dark current density is crucial to achieve high‐performance of such NIR OPDs. Herein, cyano (CN) with a strong electron‐withdrawing property is introduced into alkoxy thiophene as a π‐bridge to adjust its optoelectronic characteristics, and the correlation between dark current density and charge injection barrier is investigated. Compared with their motivated NFA (COTH), the novel CN‐substituted NFAs, COTCN and COTCN2, exhibited deeper‐lying highest occupied molecular orbital energy levels and narrower optical bandgap (&lt;1.10 eV), owing to the strong inductive and resonance effect of CN. The dark current and total noise currents are minimized as the number of substituted CN increases because of the larger hole injection barrier. Consequently, PTB7‐Th:COTCN2 exhibited the best shot‐noise limited detectivity (D*sh, 1.18 × 1012 Jones) and total noise detectivity (D*n, 1.33 × 1011 Jones) compared with those of PTB7‐Th:COTH (D*sh, 2.47 × 1011 Jones and D*n, 1.96 × 1010 Jones). The novel CN‐substituted NFAs, COTCN, and COTCN2, exhibited deeper‐lying highest occupied molecular orbital energy levels and narrower optical bandgap (&lt;1.10 eV), owing to the strong inductive and resonance effect of CN. Consequently, NIR OPDs based on PTB7‐Th:COTCN shown best specific detectivity beyond 1000 nm owing to their minimized total noise current density and high responsivity.</description><subject>Charge injection</subject><subject>CN substitutions</subject><subject>Current density</subject><subject>Dark current</subject><subject>Energy gap</subject><subject>Energy levels</subject><subject>Fullerenes</subject><subject>low dark current densities</subject><subject>Materials science</subject><subject>Molecular orbitals</subject><subject>Near infrared radiation</subject><subject>near‐infrared</subject><subject>non‐fullerene acceptors</subject><subject>Optoelectronics</subject><subject>Photometers</subject><subject>Substitutes</subject><subject>ultra narrow bandgaps</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFUM1KAzEQDqJgrV49Bzxvzc822T2W2mqhVkEFbyGbTnTLNqnZXaU3H8FH8Fl8FJ_ElEo9CjPM3_fNDB9Cp5T0KCHsXM_tsscIY5SmmdhDHSqoSDhh2f4up4-H6KiuF4RQKXnaQWFkLZgGe4uHa-08vmuLuimbtim9w9Fm3n2_f4zbqoIADvDAGFg1PmAbfQY6xOnE2aADzPFNeNKuNPj22Td-Dk3c7EONdeFfAccnydenWx6jA6urGk5-Yxc9jEf3w6tkenM5GQ6mieF9KZKsLwugRPKMFRlPoV8QUZiMG0YyrgmkkGsae7EwghIjmS64yK0knPBcFLyLzrZ7V8G_tFA3auHb4OJJxaSUUSRJRUT1tigTfF0HsGoVyqUOa0WJ2uiqNrqqna6RkG8Jb2UF63_QanAxvv7j_gC-dn5N</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ha, Jong‐Woon</creator><creator>Eun, Hyeong Ju</creator><creator>Park, Byoungwook</creator><creator>Ahn, Hyungju</creator><creator>Hwang, Dong Ryeol</creator><creator>Shim, Yeong Seok</creator><creator>Heo, Junseok</creator><creator>Lee, Changjin</creator><creator>Yoon, Sung Cheol</creator><creator>Kim, Jong H.</creator><creator>Ko, Seo‐Jin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6782-2154</orcidid><orcidid>https://orcid.org/0000-0002-5429-1216</orcidid><orcidid>https://orcid.org/0000-0002-8125-6141</orcidid><orcidid>https://orcid.org/0000-0001-8402-2140</orcidid><orcidid>https://orcid.org/0000-0002-1069-8858</orcidid><orcidid>https://orcid.org/0000-0002-0575-8748</orcidid><orcidid>https://orcid.org/0000-0002-6222-6916</orcidid><orcidid>https://orcid.org/0000-0003-1335-0598</orcidid><orcidid>https://orcid.org/0000-0002-4112-526X</orcidid><orcidid>https://orcid.org/0000-0003-3753-7947</orcidid></search><sort><creationdate>20230201</creationdate><title>Effect of Cyano Substitution on Non‐Fullerene Acceptor for Near‐Infrared Organic Photodetectors above 1000 nm</title><author>Ha, Jong‐Woon ; Eun, Hyeong Ju ; Park, Byoungwook ; Ahn, Hyungju ; Hwang, Dong Ryeol ; Shim, Yeong Seok ; Heo, Junseok ; Lee, Changjin ; Yoon, Sung Cheol ; Kim, Jong H. ; Ko, Seo‐Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-857be107382b834e5b06bc83c2083a0e4e9a1b0683ac610c72ab369f7030396b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charge injection</topic><topic>CN substitutions</topic><topic>Current density</topic><topic>Dark current</topic><topic>Energy gap</topic><topic>Energy levels</topic><topic>Fullerenes</topic><topic>low dark current densities</topic><topic>Materials science</topic><topic>Molecular orbitals</topic><topic>Near infrared radiation</topic><topic>near‐infrared</topic><topic>non‐fullerene acceptors</topic><topic>Optoelectronics</topic><topic>Photometers</topic><topic>Substitutes</topic><topic>ultra narrow bandgaps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Jong‐Woon</creatorcontrib><creatorcontrib>Eun, Hyeong Ju</creatorcontrib><creatorcontrib>Park, Byoungwook</creatorcontrib><creatorcontrib>Ahn, Hyungju</creatorcontrib><creatorcontrib>Hwang, Dong Ryeol</creatorcontrib><creatorcontrib>Shim, Yeong Seok</creatorcontrib><creatorcontrib>Heo, Junseok</creatorcontrib><creatorcontrib>Lee, Changjin</creatorcontrib><creatorcontrib>Yoon, Sung Cheol</creatorcontrib><creatorcontrib>Kim, Jong H.</creatorcontrib><creatorcontrib>Ko, Seo‐Jin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Jong‐Woon</au><au>Eun, Hyeong Ju</au><au>Park, Byoungwook</au><au>Ahn, Hyungju</au><au>Hwang, Dong Ryeol</au><au>Shim, Yeong Seok</au><au>Heo, Junseok</au><au>Lee, Changjin</au><au>Yoon, Sung Cheol</au><au>Kim, Jong H.</au><au>Ko, Seo‐Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Cyano Substitution on Non‐Fullerene Acceptor for Near‐Infrared Organic Photodetectors above 1000 nm</atitle><jtitle>Advanced functional materials</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>33</volume><issue>8</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Near‐infrared organic photodetectors (NIR OPDs) comprising ultra‐narrow bandgap non‐fullerene acceptors (NFA, over 1000 nm) typically exhibit high dark current density under applied reverse bias. Therefore, suppression of dark current density is crucial to achieve high‐performance of such NIR OPDs. Herein, cyano (CN) with a strong electron‐withdrawing property is introduced into alkoxy thiophene as a π‐bridge to adjust its optoelectronic characteristics, and the correlation between dark current density and charge injection barrier is investigated. Compared with their motivated NFA (COTH), the novel CN‐substituted NFAs, COTCN and COTCN2, exhibited deeper‐lying highest occupied molecular orbital energy levels and narrower optical bandgap (&lt;1.10 eV), owing to the strong inductive and resonance effect of CN. The dark current and total noise currents are minimized as the number of substituted CN increases because of the larger hole injection barrier. Consequently, PTB7‐Th:COTCN2 exhibited the best shot‐noise limited detectivity (D*sh, 1.18 × 1012 Jones) and total noise detectivity (D*n, 1.33 × 1011 Jones) compared with those of PTB7‐Th:COTH (D*sh, 2.47 × 1011 Jones and D*n, 1.96 × 1010 Jones). The novel CN‐substituted NFAs, COTCN, and COTCN2, exhibited deeper‐lying highest occupied molecular orbital energy levels and narrower optical bandgap (&lt;1.10 eV), owing to the strong inductive and resonance effect of CN. Consequently, NIR OPDs based on PTB7‐Th:COTCN shown best specific detectivity beyond 1000 nm owing to their minimized total noise current density and high responsivity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202211486</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6782-2154</orcidid><orcidid>https://orcid.org/0000-0002-5429-1216</orcidid><orcidid>https://orcid.org/0000-0002-8125-6141</orcidid><orcidid>https://orcid.org/0000-0001-8402-2140</orcidid><orcidid>https://orcid.org/0000-0002-1069-8858</orcidid><orcidid>https://orcid.org/0000-0002-0575-8748</orcidid><orcidid>https://orcid.org/0000-0002-6222-6916</orcidid><orcidid>https://orcid.org/0000-0003-1335-0598</orcidid><orcidid>https://orcid.org/0000-0002-4112-526X</orcidid><orcidid>https://orcid.org/0000-0003-3753-7947</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-02, Vol.33 (8), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2777148716
source Wiley Online Library Journals Frontfile Complete
subjects Charge injection
CN substitutions
Current density
Dark current
Energy gap
Energy levels
Fullerenes
low dark current densities
Materials science
Molecular orbitals
Near infrared radiation
near‐infrared
non‐fullerene acceptors
Optoelectronics
Photometers
Substitutes
ultra narrow bandgaps
title Effect of Cyano Substitution on Non‐Fullerene Acceptor for Near‐Infrared Organic Photodetectors above 1000 nm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Cyano%20Substitution%20on%20Non%E2%80%90Fullerene%20Acceptor%20for%20Near%E2%80%90Infrared%20Organic%20Photodetectors%20above%201000%C2%A0nm&rft.jtitle=Advanced%20functional%20materials&rft.au=Ha,%20Jong%E2%80%90Woon&rft.date=2023-02-01&rft.volume=33&rft.issue=8&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202211486&rft_dat=%3Cproquest_cross%3E2777148716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777148716&rft_id=info:pmid/&rfr_iscdi=true