Structurally Diverse Bench‐Stable Nickel(0) Pre‐Catalysts: A Practical Toolkit for In Situ Ligation Protocols

A flurry of recent research has centered on harnessing the power of nickel catalysis in organic synthesis. These efforts have been bolstered by contemporaneous development of well‐defined nickel (pre)catalysts with diverse structure and reactivity. In this report, we present ten different bench‐stab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-02, Vol.135 (9), p.n/a
Hauptverfasser: Tran, Van T., Kim, Nana, Rubel, Camille Z., Wu, Xiangyu, Kang, Taeho, Jankins, Tanner C., Li, Zi‐Qi, Joannou, Matthew V., Ayers, Sloan, Gembicky, Milan, Bailey, Jake, Sturgell, Emily J., Sanchez, Brittany B., Chen, Jason S., Lin, Song, Eastgate, Martin D., Wisniewski, Steven R., Engle, Keary M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Angewandte Chemie
container_volume 135
creator Tran, Van T.
Kim, Nana
Rubel, Camille Z.
Wu, Xiangyu
Kang, Taeho
Jankins, Tanner C.
Li, Zi‐Qi
Joannou, Matthew V.
Ayers, Sloan
Gembicky, Milan
Bailey, Jake
Sturgell, Emily J.
Sanchez, Brittany B.
Chen, Jason S.
Lin, Song
Eastgate, Martin D.
Wisniewski, Steven R.
Engle, Keary M.
description A flurry of recent research has centered on harnessing the power of nickel catalysis in organic synthesis. These efforts have been bolstered by contemporaneous development of well‐defined nickel (pre)catalysts with diverse structure and reactivity. In this report, we present ten different bench‐stable, 18‐electron, formally zero‐valent nickel–olefin complexes that are competent pre‐catalysts in various reactions. Our investigation includes preparations of novel, bench‐stable Ni(COD)(L) complexes (COD=1,5‐cyclooctadiene), in which L=quinone, cyclopentadienone, thiophene‐S‐oxide, and fulvene. Characterization by NMR, IR, single‐crystal X‐ray diffraction, cyclic voltammetry, thermogravimetric analysis, and natural bond orbital analysis sheds light on the structure, bonding, and properties of these complexes. Applications in an assortment of nickel‐catalyzed reactions underscore the complementary nature of the different pre‐catalysts within this toolkit. A series of air‐stable Ni0 pre‐catalysts of the general type Ni (COD) (L) are described, where L=thiophene oxide, quinone, cyclopentadienone, or fulvene. The properties of the complexes are analyzed through computational and experimental techniques. The precatalysts are competent in a variety of nickel‐catalyzed reactions and together constitute a toolkit that overcomes the limitations of both Ni (COD)2 and Ni (COD) (DQ).
doi_str_mv 10.1002/ange.202211794
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777148680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777148680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1574-407dbf90c75ae68d336e2902b5ff8ea851f7781840c3b5cd6fbd8572df55d0a23</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOP5sXQfc6KLjTdo0qbtx_IVBhdF1SdNEo7HRJFVm5yP4jD6JlRFdurpw-L5z4SC0Q2BMAOiB7O70mAKlhPCqWEEjwijJcs74KhoBFEUmaFGto40YHwCgpLwaoZd5Cr1KfZDOLfCxfdUhanykO3X_-f4xT7JxGl9a9ajdHuzj66CHeCqTdIuY4iGeDJFUySrp8I337tEmbHzAFx2e29Tjmb2TyfpuwHzyyru4hdaMdFFv_9xNdHt6cjM9z2ZXZxfTySxThPEiK4C3jalAcSZ1Kdo8LzWtgDbMGKGlYMRwLogoQOUNU21pmlYwTlvDWAuS5ptod9n7HPxLr2OqH3wfuuFlTTnnpBClgIEaLykVfIxBm_o52CcZFjWB-nvW-nvW-nfWQaiWwpt1evEPXU8uz07-3C_vjX4e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777148680</pqid></control><display><type>article</type><title>Structurally Diverse Bench‐Stable Nickel(0) Pre‐Catalysts: A Practical Toolkit for In Situ Ligation Protocols</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tran, Van T. ; Kim, Nana ; Rubel, Camille Z. ; Wu, Xiangyu ; Kang, Taeho ; Jankins, Tanner C. ; Li, Zi‐Qi ; Joannou, Matthew V. ; Ayers, Sloan ; Gembicky, Milan ; Bailey, Jake ; Sturgell, Emily J. ; Sanchez, Brittany B. ; Chen, Jason S. ; Lin, Song ; Eastgate, Martin D. ; Wisniewski, Steven R. ; Engle, Keary M.</creator><creatorcontrib>Tran, Van T. ; Kim, Nana ; Rubel, Camille Z. ; Wu, Xiangyu ; Kang, Taeho ; Jankins, Tanner C. ; Li, Zi‐Qi ; Joannou, Matthew V. ; Ayers, Sloan ; Gembicky, Milan ; Bailey, Jake ; Sturgell, Emily J. ; Sanchez, Brittany B. ; Chen, Jason S. ; Lin, Song ; Eastgate, Martin D. ; Wisniewski, Steven R. ; Engle, Keary M.</creatorcontrib><description>A flurry of recent research has centered on harnessing the power of nickel catalysis in organic synthesis. These efforts have been bolstered by contemporaneous development of well‐defined nickel (pre)catalysts with diverse structure and reactivity. In this report, we present ten different bench‐stable, 18‐electron, formally zero‐valent nickel–olefin complexes that are competent pre‐catalysts in various reactions. Our investigation includes preparations of novel, bench‐stable Ni(COD)(L) complexes (COD=1,5‐cyclooctadiene), in which L=quinone, cyclopentadienone, thiophene‐S‐oxide, and fulvene. Characterization by NMR, IR, single‐crystal X‐ray diffraction, cyclic voltammetry, thermogravimetric analysis, and natural bond orbital analysis sheds light on the structure, bonding, and properties of these complexes. Applications in an assortment of nickel‐catalyzed reactions underscore the complementary nature of the different pre‐catalysts within this toolkit. A series of air‐stable Ni0 pre‐catalysts of the general type Ni (COD) (L) are described, where L=thiophene oxide, quinone, cyclopentadienone, or fulvene. The properties of the complexes are analyzed through computational and experimental techniques. The precatalysts are competent in a variety of nickel‐catalyzed reactions and together constitute a toolkit that overcomes the limitations of both Ni (COD)2 and Ni (COD) (DQ).</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202211794</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalyst Toolkit ; Catalysts ; Chemical reactions ; Chemical synthesis ; Chemistry ; Cross-Coupling ; Ligand Design ; Nickel ; NMR ; Nuclear magnetic resonance ; Pre-Catalyst ; Quinones ; Thermogravimetric analysis ; Toolkits</subject><ispartof>Angewandte Chemie, 2023-02, Vol.135 (9), p.n/a</ispartof><rights>2022 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1574-407dbf90c75ae68d336e2902b5ff8ea851f7781840c3b5cd6fbd8572df55d0a23</cites><orcidid>0000-0003-0861-6590 ; 0000-0001-6777-2193 ; 0000-0002-8880-6476 ; 0000-0002-0079-7107 ; 0000-0003-1169-1997 ; 0000-0002-3898-1612 ; 0000-0002-7341-5763 ; 0000-0001-6035-4394 ; 0000-0002-6487-3121 ; 0000-0003-2767-6556 ; 0000-0003-3562-1846 ; 0000-0002-4659-8189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202211794$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202211794$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Tran, Van T.</creatorcontrib><creatorcontrib>Kim, Nana</creatorcontrib><creatorcontrib>Rubel, Camille Z.</creatorcontrib><creatorcontrib>Wu, Xiangyu</creatorcontrib><creatorcontrib>Kang, Taeho</creatorcontrib><creatorcontrib>Jankins, Tanner C.</creatorcontrib><creatorcontrib>Li, Zi‐Qi</creatorcontrib><creatorcontrib>Joannou, Matthew V.</creatorcontrib><creatorcontrib>Ayers, Sloan</creatorcontrib><creatorcontrib>Gembicky, Milan</creatorcontrib><creatorcontrib>Bailey, Jake</creatorcontrib><creatorcontrib>Sturgell, Emily J.</creatorcontrib><creatorcontrib>Sanchez, Brittany B.</creatorcontrib><creatorcontrib>Chen, Jason S.</creatorcontrib><creatorcontrib>Lin, Song</creatorcontrib><creatorcontrib>Eastgate, Martin D.</creatorcontrib><creatorcontrib>Wisniewski, Steven R.</creatorcontrib><creatorcontrib>Engle, Keary M.</creatorcontrib><title>Structurally Diverse Bench‐Stable Nickel(0) Pre‐Catalysts: A Practical Toolkit for In Situ Ligation Protocols</title><title>Angewandte Chemie</title><description>A flurry of recent research has centered on harnessing the power of nickel catalysis in organic synthesis. These efforts have been bolstered by contemporaneous development of well‐defined nickel (pre)catalysts with diverse structure and reactivity. In this report, we present ten different bench‐stable, 18‐electron, formally zero‐valent nickel–olefin complexes that are competent pre‐catalysts in various reactions. Our investigation includes preparations of novel, bench‐stable Ni(COD)(L) complexes (COD=1,5‐cyclooctadiene), in which L=quinone, cyclopentadienone, thiophene‐S‐oxide, and fulvene. Characterization by NMR, IR, single‐crystal X‐ray diffraction, cyclic voltammetry, thermogravimetric analysis, and natural bond orbital analysis sheds light on the structure, bonding, and properties of these complexes. Applications in an assortment of nickel‐catalyzed reactions underscore the complementary nature of the different pre‐catalysts within this toolkit. A series of air‐stable Ni0 pre‐catalysts of the general type Ni (COD) (L) are described, where L=thiophene oxide, quinone, cyclopentadienone, or fulvene. The properties of the complexes are analyzed through computational and experimental techniques. The precatalysts are competent in a variety of nickel‐catalyzed reactions and together constitute a toolkit that overcomes the limitations of both Ni (COD)2 and Ni (COD) (DQ).</description><subject>Catalysis</subject><subject>Catalyst Toolkit</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Cross-Coupling</subject><subject>Ligand Design</subject><subject>Nickel</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Pre-Catalyst</subject><subject>Quinones</subject><subject>Thermogravimetric analysis</subject><subject>Toolkits</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1KxDAUhYMoOP5sXQfc6KLjTdo0qbtx_IVBhdF1SdNEo7HRJFVm5yP4jD6JlRFdurpw-L5z4SC0Q2BMAOiB7O70mAKlhPCqWEEjwijJcs74KhoBFEUmaFGto40YHwCgpLwaoZd5Cr1KfZDOLfCxfdUhanykO3X_-f4xT7JxGl9a9ajdHuzj66CHeCqTdIuY4iGeDJFUySrp8I337tEmbHzAFx2e29Tjmb2TyfpuwHzyyru4hdaMdFFv_9xNdHt6cjM9z2ZXZxfTySxThPEiK4C3jalAcSZ1Kdo8LzWtgDbMGKGlYMRwLogoQOUNU21pmlYwTlvDWAuS5ptod9n7HPxLr2OqH3wfuuFlTTnnpBClgIEaLykVfIxBm_o52CcZFjWB-nvW-nvW-nfWQaiWwpt1evEPXU8uz07-3C_vjX4e</recordid><startdate>20230220</startdate><enddate>20230220</enddate><creator>Tran, Van T.</creator><creator>Kim, Nana</creator><creator>Rubel, Camille Z.</creator><creator>Wu, Xiangyu</creator><creator>Kang, Taeho</creator><creator>Jankins, Tanner C.</creator><creator>Li, Zi‐Qi</creator><creator>Joannou, Matthew V.</creator><creator>Ayers, Sloan</creator><creator>Gembicky, Milan</creator><creator>Bailey, Jake</creator><creator>Sturgell, Emily J.</creator><creator>Sanchez, Brittany B.</creator><creator>Chen, Jason S.</creator><creator>Lin, Song</creator><creator>Eastgate, Martin D.</creator><creator>Wisniewski, Steven R.</creator><creator>Engle, Keary M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0861-6590</orcidid><orcidid>https://orcid.org/0000-0001-6777-2193</orcidid><orcidid>https://orcid.org/0000-0002-8880-6476</orcidid><orcidid>https://orcid.org/0000-0002-0079-7107</orcidid><orcidid>https://orcid.org/0000-0003-1169-1997</orcidid><orcidid>https://orcid.org/0000-0002-3898-1612</orcidid><orcidid>https://orcid.org/0000-0002-7341-5763</orcidid><orcidid>https://orcid.org/0000-0001-6035-4394</orcidid><orcidid>https://orcid.org/0000-0002-6487-3121</orcidid><orcidid>https://orcid.org/0000-0003-2767-6556</orcidid><orcidid>https://orcid.org/0000-0003-3562-1846</orcidid><orcidid>https://orcid.org/0000-0002-4659-8189</orcidid></search><sort><creationdate>20230220</creationdate><title>Structurally Diverse Bench‐Stable Nickel(0) Pre‐Catalysts: A Practical Toolkit for In Situ Ligation Protocols</title><author>Tran, Van T. ; Kim, Nana ; Rubel, Camille Z. ; Wu, Xiangyu ; Kang, Taeho ; Jankins, Tanner C. ; Li, Zi‐Qi ; Joannou, Matthew V. ; Ayers, Sloan ; Gembicky, Milan ; Bailey, Jake ; Sturgell, Emily J. ; Sanchez, Brittany B. ; Chen, Jason S. ; Lin, Song ; Eastgate, Martin D. ; Wisniewski, Steven R. ; Engle, Keary M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1574-407dbf90c75ae68d336e2902b5ff8ea851f7781840c3b5cd6fbd8572df55d0a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysis</topic><topic>Catalyst Toolkit</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Cross-Coupling</topic><topic>Ligand Design</topic><topic>Nickel</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Pre-Catalyst</topic><topic>Quinones</topic><topic>Thermogravimetric analysis</topic><topic>Toolkits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Van T.</creatorcontrib><creatorcontrib>Kim, Nana</creatorcontrib><creatorcontrib>Rubel, Camille Z.</creatorcontrib><creatorcontrib>Wu, Xiangyu</creatorcontrib><creatorcontrib>Kang, Taeho</creatorcontrib><creatorcontrib>Jankins, Tanner C.</creatorcontrib><creatorcontrib>Li, Zi‐Qi</creatorcontrib><creatorcontrib>Joannou, Matthew V.</creatorcontrib><creatorcontrib>Ayers, Sloan</creatorcontrib><creatorcontrib>Gembicky, Milan</creatorcontrib><creatorcontrib>Bailey, Jake</creatorcontrib><creatorcontrib>Sturgell, Emily J.</creatorcontrib><creatorcontrib>Sanchez, Brittany B.</creatorcontrib><creatorcontrib>Chen, Jason S.</creatorcontrib><creatorcontrib>Lin, Song</creatorcontrib><creatorcontrib>Eastgate, Martin D.</creatorcontrib><creatorcontrib>Wisniewski, Steven R.</creatorcontrib><creatorcontrib>Engle, Keary M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Van T.</au><au>Kim, Nana</au><au>Rubel, Camille Z.</au><au>Wu, Xiangyu</au><au>Kang, Taeho</au><au>Jankins, Tanner C.</au><au>Li, Zi‐Qi</au><au>Joannou, Matthew V.</au><au>Ayers, Sloan</au><au>Gembicky, Milan</au><au>Bailey, Jake</au><au>Sturgell, Emily J.</au><au>Sanchez, Brittany B.</au><au>Chen, Jason S.</au><au>Lin, Song</au><au>Eastgate, Martin D.</au><au>Wisniewski, Steven R.</au><au>Engle, Keary M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structurally Diverse Bench‐Stable Nickel(0) Pre‐Catalysts: A Practical Toolkit for In Situ Ligation Protocols</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-02-20</date><risdate>2023</risdate><volume>135</volume><issue>9</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>A flurry of recent research has centered on harnessing the power of nickel catalysis in organic synthesis. These efforts have been bolstered by contemporaneous development of well‐defined nickel (pre)catalysts with diverse structure and reactivity. In this report, we present ten different bench‐stable, 18‐electron, formally zero‐valent nickel–olefin complexes that are competent pre‐catalysts in various reactions. Our investigation includes preparations of novel, bench‐stable Ni(COD)(L) complexes (COD=1,5‐cyclooctadiene), in which L=quinone, cyclopentadienone, thiophene‐S‐oxide, and fulvene. Characterization by NMR, IR, single‐crystal X‐ray diffraction, cyclic voltammetry, thermogravimetric analysis, and natural bond orbital analysis sheds light on the structure, bonding, and properties of these complexes. Applications in an assortment of nickel‐catalyzed reactions underscore the complementary nature of the different pre‐catalysts within this toolkit. A series of air‐stable Ni0 pre‐catalysts of the general type Ni (COD) (L) are described, where L=thiophene oxide, quinone, cyclopentadienone, or fulvene. The properties of the complexes are analyzed through computational and experimental techniques. The precatalysts are competent in a variety of nickel‐catalyzed reactions and together constitute a toolkit that overcomes the limitations of both Ni (COD)2 and Ni (COD) (DQ).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202211794</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0861-6590</orcidid><orcidid>https://orcid.org/0000-0001-6777-2193</orcidid><orcidid>https://orcid.org/0000-0002-8880-6476</orcidid><orcidid>https://orcid.org/0000-0002-0079-7107</orcidid><orcidid>https://orcid.org/0000-0003-1169-1997</orcidid><orcidid>https://orcid.org/0000-0002-3898-1612</orcidid><orcidid>https://orcid.org/0000-0002-7341-5763</orcidid><orcidid>https://orcid.org/0000-0001-6035-4394</orcidid><orcidid>https://orcid.org/0000-0002-6487-3121</orcidid><orcidid>https://orcid.org/0000-0003-2767-6556</orcidid><orcidid>https://orcid.org/0000-0003-3562-1846</orcidid><orcidid>https://orcid.org/0000-0002-4659-8189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2023-02, Vol.135 (9), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2777148680
source Wiley Online Library Journals Frontfile Complete
subjects Catalysis
Catalyst Toolkit
Catalysts
Chemical reactions
Chemical synthesis
Chemistry
Cross-Coupling
Ligand Design
Nickel
NMR
Nuclear magnetic resonance
Pre-Catalyst
Quinones
Thermogravimetric analysis
Toolkits
title Structurally Diverse Bench‐Stable Nickel(0) Pre‐Catalysts: A Practical Toolkit for In Situ Ligation Protocols
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structurally%20Diverse%20Bench%E2%80%90Stable%20Nickel(0)%20Pre%E2%80%90Catalysts:%20A%20Practical%20Toolkit%20for%20In%20Situ%20Ligation%20Protocols&rft.jtitle=Angewandte%20Chemie&rft.au=Tran,%20Van%20T.&rft.date=2023-02-20&rft.volume=135&rft.issue=9&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202211794&rft_dat=%3Cproquest_cross%3E2777148680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777148680&rft_id=info:pmid/&rfr_iscdi=true