Numerical solution of the Poisson equation with vacuum boundary conditions using TPU

The paper describes an algorithm for computing the approximation of the potential of an infinitely thin disk on a Cartesian grid. Results computed for the potential of a disk with a specified surface density are reported.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Malkov, E. A., Kudryavtsev, A. N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2504
creator Malkov, E. A.
Kudryavtsev, A. N.
description The paper describes an algorithm for computing the approximation of the potential of an infinitely thin disk on a Cartesian grid. Results computed for the potential of a disk with a specified surface density are reported.
doi_str_mv 10.1063/5.0132391
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2777134817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777134817</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2031-a6e3be9069e2437854642d8e874f3c10dd4119078952281e37c84d95c64bd7cc3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAm7A1k2Q3yVGKX1C0hxa8hW2StSntZrvZVPz3bj_Am6dhZp6ZeedF6BbICEjBHvIRAUaZgjM0gDyHTBRQnKMBIYpnlLPPS3QV44oQqoSQAzR7TxvXelOucQzr1PlQ41DhbunwNPgY-9RtU3mof_tuiXelSWmDFyHVtmx_sAm19ft2xCn6-gvPpvNrdFGV6-huTnGI5s9Ps_FrNvl4eRs_TrKGEgZZWTi2cIoUyvXKhMx5wamVTgpeMQPEWg6giJAqp1SCY8JIblVuCr6wwhg2RHfHvU0btsnFTq9Cauv-pKZCCGBcguip-yMVje8On-im9ZtevN6FVuf65JhubPUfDETvLf4bYL8c72zo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2777134817</pqid></control><display><type>conference_proceeding</type><title>Numerical solution of the Poisson equation with vacuum boundary conditions using TPU</title><source>AIP Journals Complete</source><creator>Malkov, E. A. ; Kudryavtsev, A. N.</creator><contributor>Fedorova, Natalya ; Fomin, Vasily ; Buzyurkin, Andrey</contributor><creatorcontrib>Malkov, E. A. ; Kudryavtsev, A. N. ; Fedorova, Natalya ; Fomin, Vasily ; Buzyurkin, Andrey</creatorcontrib><description>The paper describes an algorithm for computing the approximation of the potential of an infinitely thin disk on a Cartesian grid. Results computed for the potential of a disk with a specified surface density are reported.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0132391</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Boundary conditions ; Cartesian coordinates ; Poisson equation</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2504 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0132391$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Fedorova, Natalya</contributor><contributor>Fomin, Vasily</contributor><contributor>Buzyurkin, Andrey</contributor><creatorcontrib>Malkov, E. A.</creatorcontrib><creatorcontrib>Kudryavtsev, A. N.</creatorcontrib><title>Numerical solution of the Poisson equation with vacuum boundary conditions using TPU</title><title>AIP Conference Proceedings</title><description>The paper describes an algorithm for computing the approximation of the potential of an infinitely thin disk on a Cartesian grid. Results computed for the potential of a disk with a specified surface density are reported.</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Cartesian coordinates</subject><subject>Poisson equation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAm7A1k2Q3yVGKX1C0hxa8hW2StSntZrvZVPz3bj_Am6dhZp6ZeedF6BbICEjBHvIRAUaZgjM0gDyHTBRQnKMBIYpnlLPPS3QV44oQqoSQAzR7TxvXelOucQzr1PlQ41DhbunwNPgY-9RtU3mof_tuiXelSWmDFyHVtmx_sAm19ft2xCn6-gvPpvNrdFGV6-huTnGI5s9Ps_FrNvl4eRs_TrKGEgZZWTi2cIoUyvXKhMx5wamVTgpeMQPEWg6giJAqp1SCY8JIblVuCr6wwhg2RHfHvU0btsnFTq9Cauv-pKZCCGBcguip-yMVje8On-im9ZtevN6FVuf65JhubPUfDETvLf4bYL8c72zo</recordid><startdate>20230216</startdate><enddate>20230216</enddate><creator>Malkov, E. A.</creator><creator>Kudryavtsev, A. N.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230216</creationdate><title>Numerical solution of the Poisson equation with vacuum boundary conditions using TPU</title><author>Malkov, E. A. ; Kudryavtsev, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2031-a6e3be9069e2437854642d8e874f3c10dd4119078952281e37c84d95c64bd7cc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Cartesian coordinates</topic><topic>Poisson equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malkov, E. A.</creatorcontrib><creatorcontrib>Kudryavtsev, A. N.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malkov, E. A.</au><au>Kudryavtsev, A. N.</au><au>Fedorova, Natalya</au><au>Fomin, Vasily</au><au>Buzyurkin, Andrey</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical solution of the Poisson equation with vacuum boundary conditions using TPU</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-02-16</date><risdate>2023</risdate><volume>2504</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The paper describes an algorithm for computing the approximation of the potential of an infinitely thin disk on a Cartesian grid. Results computed for the potential of a disk with a specified surface density are reported.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0132391</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2504 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2777134817
source AIP Journals Complete
subjects Algorithms
Boundary conditions
Cartesian coordinates
Poisson equation
title Numerical solution of the Poisson equation with vacuum boundary conditions using TPU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20solution%20of%20the%20Poisson%20equation%20with%20vacuum%20boundary%20conditions%20using%20TPU&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Malkov,%20E.%20A.&rft.date=2023-02-16&rft.volume=2504&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0132391&rft_dat=%3Cproquest_scita%3E2777134817%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777134817&rft_id=info:pmid/&rfr_iscdi=true