Molecular Gas Properties in Young Stellar Clusters with a Suppressed Star Cluster Wind

In compact and dense star-forming clouds a global star cluster wind could be suppressed. In this case stellar feedback is unable to expel the leftover gas from the cluster. Young massive stars remain embedded in a dense residual gas and stir it by moving in the gravitational well of the system. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2023-02, Vol.944 (2), p.L32
Hauptverfasser: Silich, Sergiy, Turner, Jean, Mackey, Jonathan, Martínez-González, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In compact and dense star-forming clouds a global star cluster wind could be suppressed. In this case stellar feedback is unable to expel the leftover gas from the cluster. Young massive stars remain embedded in a dense residual gas and stir it by moving in the gravitational well of the system. Here we present a self-consistent model for the molecular gas distribution in such young, enshrouded stellar clusters. It is assumed that the cloud collapse terminates and the star formation ceases when a balance between the turbulent pressure and gravity and between the turbulent energy dissipation and regeneration rates is established. These conditions result in an equation that determines the residual gas density distribution that, in turn, allows one to determine the other characteristics of the leftover gas and the star formation efficiency. It is shown that our model predictions are in good agreement with several observationally determined properties of cloud D1 in the nearby dwarf spheroidal galaxy NGC 5253 and its embedded cluster.
ISSN:2041-8205
2041-8213
DOI:10.3847/2041-8213/acb687