Photon Number Resolution with an Iridium Optical Transition Edge Sensor at a Telecommunication Wavelength
We report the photon number resolution at a telecommunication wavelength using a fabricated iridium optical transition edge sensor (TES). Iridium is a chemically stable material, and hence, the iridium TES is expected to exhibit long-term stable device characteristics. Because of the material stabil...
Gespeichert in:
Veröffentlicht in: | Journal of low temperature physics 2023-02, Vol.210 (3-4), p.498-505 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 505 |
---|---|
container_issue | 3-4 |
container_start_page | 498 |
container_title | Journal of low temperature physics |
container_volume | 210 |
creator | Mitsuya, Yuki Konno, Toshio Takasu, Sachiko Hattori, Kaori Ohno, Masashi Fukuda, Daiji Takahashi, Hiroyuki |
description | We report the photon number resolution at a telecommunication wavelength using a fabricated iridium optical transition edge sensor (TES). Iridium is a chemically stable material, and hence, the iridium TES is expected to exhibit long-term stable device characteristics. Because of the material stability, iridium TES can be formed in relatively simple single-layer structure, which would exhibit uniform device characteristics if large-arrays are constructed in a future. An iridium TES with a sensitive area of 8 μm × 8 μm was fabricated via radio frequency magnetron sputtering, photolithography, and a lift-off technique. The device was cooled in a dilution refrigerator, and its characteristics such as current-to-voltage curve, power-to-voltage curve, and power-to-bath-temperature curve were investigated. The TES exhibited a transition temperature of 355 mK. The TES was irradiated with a pulsed laser source with a wavelength of 1528 nm. A fast response speed was obtained using the TES, and the dominant decay time constant was 761 ns. The photon number resolution was successfully performed, and the energy resolution was 0.464 eV in full width at half maximum. |
doi_str_mv | 10.1007/s10909-022-02928-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777044638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777044638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-292382310eb8d8362f16c83946ae5ed617aca6cd1b803f144a52ed05ae767e4d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPA8-ok2U2yRylVC0VFKx5DupttU7pJTXYV_71pV_DmYRiY-d6b4SF0SeCaAIibSKCEMgNKU5VUZnCERqQQLBOsEMdoBPsVpSU5RWcxbgCglJyNkH1e-847_Ni3SxPwi4l-23c2Tb5st8ba4Vmwte1b_LTrbKW3eBG0i_aATOuVwa_GRR-w7rDGC7M1lW_b3iX0gLzrzzRzq259jk4avY3m4reP0dvddDF5yOZP97PJ7TyrGCm7LH3PJGUEzFLWknHaEF5JVuZcm8LUnAhdaV7VZCmBNSTPdUFNDYU2gguT12yMrgbfXfAfvYmd2vg-uHRSUSEE5DlnMlF0oKrgYwymUbtgWx2-FQG1j1QNkaqUmzpEqiCJ2CCKCXYrE_6s_1H9AIjmeho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777044638</pqid></control><display><type>article</type><title>Photon Number Resolution with an Iridium Optical Transition Edge Sensor at a Telecommunication Wavelength</title><source>SpringerLink Journals</source><creator>Mitsuya, Yuki ; Konno, Toshio ; Takasu, Sachiko ; Hattori, Kaori ; Ohno, Masashi ; Fukuda, Daiji ; Takahashi, Hiroyuki</creator><creatorcontrib>Mitsuya, Yuki ; Konno, Toshio ; Takasu, Sachiko ; Hattori, Kaori ; Ohno, Masashi ; Fukuda, Daiji ; Takahashi, Hiroyuki</creatorcontrib><description>We report the photon number resolution at a telecommunication wavelength using a fabricated iridium optical transition edge sensor (TES). Iridium is a chemically stable material, and hence, the iridium TES is expected to exhibit long-term stable device characteristics. Because of the material stability, iridium TES can be formed in relatively simple single-layer structure, which would exhibit uniform device characteristics if large-arrays are constructed in a future. An iridium TES with a sensitive area of 8 μm × 8 μm was fabricated via radio frequency magnetron sputtering, photolithography, and a lift-off technique. The device was cooled in a dilution refrigerator, and its characteristics such as current-to-voltage curve, power-to-voltage curve, and power-to-bath-temperature curve were investigated. The TES exhibited a transition temperature of 355 mK. The TES was irradiated with a pulsed laser source with a wavelength of 1528 nm. A fast response speed was obtained using the TES, and the dominant decay time constant was 761 ns. The photon number resolution was successfully performed, and the energy resolution was 0.464 eV in full width at half maximum.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-022-02928-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Dilution ; Electric potential ; Energy resolution ; Low temperature physics ; Magnetic Materials ; Magnetism ; Magnetron sputtering ; Optical transition ; Photolithography ; Photons ; Physics ; Physics and Astronomy ; Pulsed lasers ; Time constant ; Transition temperature ; Voltage</subject><ispartof>Journal of low temperature physics, 2023-02, Vol.210 (3-4), p.498-505</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-292382310eb8d8362f16c83946ae5ed617aca6cd1b803f144a52ed05ae767e4d3</citedby><cites>FETCH-LOGICAL-c319t-292382310eb8d8362f16c83946ae5ed617aca6cd1b803f144a52ed05ae767e4d3</cites><orcidid>0000-0001-7207-7638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-022-02928-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-022-02928-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mitsuya, Yuki</creatorcontrib><creatorcontrib>Konno, Toshio</creatorcontrib><creatorcontrib>Takasu, Sachiko</creatorcontrib><creatorcontrib>Hattori, Kaori</creatorcontrib><creatorcontrib>Ohno, Masashi</creatorcontrib><creatorcontrib>Fukuda, Daiji</creatorcontrib><creatorcontrib>Takahashi, Hiroyuki</creatorcontrib><title>Photon Number Resolution with an Iridium Optical Transition Edge Sensor at a Telecommunication Wavelength</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>We report the photon number resolution at a telecommunication wavelength using a fabricated iridium optical transition edge sensor (TES). Iridium is a chemically stable material, and hence, the iridium TES is expected to exhibit long-term stable device characteristics. Because of the material stability, iridium TES can be formed in relatively simple single-layer structure, which would exhibit uniform device characteristics if large-arrays are constructed in a future. An iridium TES with a sensitive area of 8 μm × 8 μm was fabricated via radio frequency magnetron sputtering, photolithography, and a lift-off technique. The device was cooled in a dilution refrigerator, and its characteristics such as current-to-voltage curve, power-to-voltage curve, and power-to-bath-temperature curve were investigated. The TES exhibited a transition temperature of 355 mK. The TES was irradiated with a pulsed laser source with a wavelength of 1528 nm. A fast response speed was obtained using the TES, and the dominant decay time constant was 761 ns. The photon number resolution was successfully performed, and the energy resolution was 0.464 eV in full width at half maximum.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Dilution</subject><subject>Electric potential</subject><subject>Energy resolution</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Magnetron sputtering</subject><subject>Optical transition</subject><subject>Photolithography</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pulsed lasers</subject><subject>Time constant</subject><subject>Transition temperature</subject><subject>Voltage</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wFPA8-ok2U2yRylVC0VFKx5DupttU7pJTXYV_71pV_DmYRiY-d6b4SF0SeCaAIibSKCEMgNKU5VUZnCERqQQLBOsEMdoBPsVpSU5RWcxbgCglJyNkH1e-847_Ni3SxPwi4l-23c2Tb5st8ba4Vmwte1b_LTrbKW3eBG0i_aATOuVwa_GRR-w7rDGC7M1lW_b3iX0gLzrzzRzq259jk4avY3m4reP0dvddDF5yOZP97PJ7TyrGCm7LH3PJGUEzFLWknHaEF5JVuZcm8LUnAhdaV7VZCmBNSTPdUFNDYU2gguT12yMrgbfXfAfvYmd2vg-uHRSUSEE5DlnMlF0oKrgYwymUbtgWx2-FQG1j1QNkaqUmzpEqiCJ2CCKCXYrE_6s_1H9AIjmeho</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Mitsuya, Yuki</creator><creator>Konno, Toshio</creator><creator>Takasu, Sachiko</creator><creator>Hattori, Kaori</creator><creator>Ohno, Masashi</creator><creator>Fukuda, Daiji</creator><creator>Takahashi, Hiroyuki</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7207-7638</orcidid></search><sort><creationdate>20230201</creationdate><title>Photon Number Resolution with an Iridium Optical Transition Edge Sensor at a Telecommunication Wavelength</title><author>Mitsuya, Yuki ; Konno, Toshio ; Takasu, Sachiko ; Hattori, Kaori ; Ohno, Masashi ; Fukuda, Daiji ; Takahashi, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-292382310eb8d8362f16c83946ae5ed617aca6cd1b803f144a52ed05ae767e4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Dilution</topic><topic>Electric potential</topic><topic>Energy resolution</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Magnetron sputtering</topic><topic>Optical transition</topic><topic>Photolithography</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pulsed lasers</topic><topic>Time constant</topic><topic>Transition temperature</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitsuya, Yuki</creatorcontrib><creatorcontrib>Konno, Toshio</creatorcontrib><creatorcontrib>Takasu, Sachiko</creatorcontrib><creatorcontrib>Hattori, Kaori</creatorcontrib><creatorcontrib>Ohno, Masashi</creatorcontrib><creatorcontrib>Fukuda, Daiji</creatorcontrib><creatorcontrib>Takahashi, Hiroyuki</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitsuya, Yuki</au><au>Konno, Toshio</au><au>Takasu, Sachiko</au><au>Hattori, Kaori</au><au>Ohno, Masashi</au><au>Fukuda, Daiji</au><au>Takahashi, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photon Number Resolution with an Iridium Optical Transition Edge Sensor at a Telecommunication Wavelength</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>210</volume><issue>3-4</issue><spage>498</spage><epage>505</epage><pages>498-505</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We report the photon number resolution at a telecommunication wavelength using a fabricated iridium optical transition edge sensor (TES). Iridium is a chemically stable material, and hence, the iridium TES is expected to exhibit long-term stable device characteristics. Because of the material stability, iridium TES can be formed in relatively simple single-layer structure, which would exhibit uniform device characteristics if large-arrays are constructed in a future. An iridium TES with a sensitive area of 8 μm × 8 μm was fabricated via radio frequency magnetron sputtering, photolithography, and a lift-off technique. The device was cooled in a dilution refrigerator, and its characteristics such as current-to-voltage curve, power-to-voltage curve, and power-to-bath-temperature curve were investigated. The TES exhibited a transition temperature of 355 mK. The TES was irradiated with a pulsed laser source with a wavelength of 1528 nm. A fast response speed was obtained using the TES, and the dominant decay time constant was 761 ns. The photon number resolution was successfully performed, and the energy resolution was 0.464 eV in full width at half maximum.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-022-02928-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7207-7638</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | Journal of low temperature physics, 2023-02, Vol.210 (3-4), p.498-505 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_proquest_journals_2777044638 |
source | SpringerLink Journals |
subjects | Characterization and Evaluation of Materials Condensed Matter Physics Dilution Electric potential Energy resolution Low temperature physics Magnetic Materials Magnetism Magnetron sputtering Optical transition Photolithography Photons Physics Physics and Astronomy Pulsed lasers Time constant Transition temperature Voltage |
title | Photon Number Resolution with an Iridium Optical Transition Edge Sensor at a Telecommunication Wavelength |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photon%20Number%20Resolution%20with%20an%20Iridium%20Optical%20Transition%20Edge%20Sensor%20at%20a%20Telecommunication%20Wavelength&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Mitsuya,%20Yuki&rft.date=2023-02-01&rft.volume=210&rft.issue=3-4&rft.spage=498&rft.epage=505&rft.pages=498-505&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-022-02928-0&rft_dat=%3Cproquest_cross%3E2777044638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777044638&rft_id=info:pmid/&rfr_iscdi=true |