Thermal modulation of reaction equilibria controls mass transfer in CO2-binding organic liquids
CO2-Binding organic liquids (CO2BOLs) are non-aqueous solvents which may reduce the parasitic energy of carbon capture processes. These solvents exhibit surprising mass transfer behavior: at fixed pressure driving force, the flux of CO2 into CO2BOLs decreases exponentially with increased temperature...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2023-02, Vol.16 (2), p.484-490 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 490 |
---|---|
container_issue | 2 |
container_start_page | 484 |
container_title | Energy & environmental science |
container_volume | 16 |
creator | Moore, Thomas Varni, Anthony J Pang, Simon H Akhade, Sneha A Li, Sichi Nguyen, Du T Stolaroff, Joshuah K |
description | CO2-Binding organic liquids (CO2BOLs) are non-aqueous solvents which may reduce the parasitic energy of carbon capture processes. These solvents exhibit surprising mass transfer behavior: at fixed pressure driving force, the flux of CO2 into CO2BOLs decreases exponentially with increased temperature, a phenomenon not observed in aqueous amines. Here, we demonstrate that this phenomenon is primarily driven by a shift in reaction equilibrium, which reduces the degree to which chemical reactions enhance the CO2 flux. First-principles surface renewal models quantitatively reproduce mass transfer data for CO2 absorption into 2-EEMPA, IPADM-2-BOL and DBU:Hexanol across a range of temperatures. Density functional theory calculations are used to identify structural modifications likely to improve the CO2 flux. These findings reveal a fundamental trade-off between CO2 flux and the energy required for solvent regeneration, and provide a theoretical foundation for rational solvent design and the development of physics-informed mass transfer models. |
doi_str_mv | 10.1039/d2ee03237f |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2776934336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776934336</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-b7576a93200172a29c472c9fcd2770a8aaf7668a37925eb6af567b06cc7ea0403</originalsourceid><addsrcrecordid>eNo1jctOwzAQRS0EEqWw4QsssQ5M7MRTL1HES6rUTVlHE8curhK7tZP_J-Kxumdzz2HsvoTHEqR-6oW1IIVEd8FWJdZVUSOoy39WWlyzm5yPAEoA6hVr9182jTTwMfbzQJOPgUfHkyXzw_Y8-8F3yRM3MUwpDpmPlDOfEoXsbOI-8GYnis6H3ocDj-lAwRs--OXZ51t25WjI9u5v1-zz9WXfvBfb3dtH87wtTqLUU9FhjYq0FAAlChLaVCiMdqYXiEAbIodKbUiiFrXtFLlaYQfKGLQEFcg1e_j1nlI8zzZP7THOKSzJdjEoLSsplfwG4jRWLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776934336</pqid></control><display><type>article</type><title>Thermal modulation of reaction equilibria controls mass transfer in CO2-binding organic liquids</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Moore, Thomas ; Varni, Anthony J ; Pang, Simon H ; Akhade, Sneha A ; Li, Sichi ; Nguyen, Du T ; Stolaroff, Joshuah K</creator><creatorcontrib>Moore, Thomas ; Varni, Anthony J ; Pang, Simon H ; Akhade, Sneha A ; Li, Sichi ; Nguyen, Du T ; Stolaroff, Joshuah K</creatorcontrib><description>CO2-Binding organic liquids (CO2BOLs) are non-aqueous solvents which may reduce the parasitic energy of carbon capture processes. These solvents exhibit surprising mass transfer behavior: at fixed pressure driving force, the flux of CO2 into CO2BOLs decreases exponentially with increased temperature, a phenomenon not observed in aqueous amines. Here, we demonstrate that this phenomenon is primarily driven by a shift in reaction equilibrium, which reduces the degree to which chemical reactions enhance the CO2 flux. First-principles surface renewal models quantitatively reproduce mass transfer data for CO2 absorption into 2-EEMPA, IPADM-2-BOL and DBU:Hexanol across a range of temperatures. Density functional theory calculations are used to identify structural modifications likely to improve the CO2 flux. These findings reveal a fundamental trade-off between CO2 flux and the energy required for solvent regeneration, and provide a theoretical foundation for rational solvent design and the development of physics-informed mass transfer models.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee03237f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Amines ; Binding ; Carbon dioxide ; Carbon sequestration ; Chemical reactions ; Density functional theory ; First principles ; Fluctuations ; Hexanol ; Mass transfer ; Organic liquids ; Solvents</subject><ispartof>Energy & environmental science, 2023-02, Vol.16 (2), p.484-490</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Moore, Thomas</creatorcontrib><creatorcontrib>Varni, Anthony J</creatorcontrib><creatorcontrib>Pang, Simon H</creatorcontrib><creatorcontrib>Akhade, Sneha A</creatorcontrib><creatorcontrib>Li, Sichi</creatorcontrib><creatorcontrib>Nguyen, Du T</creatorcontrib><creatorcontrib>Stolaroff, Joshuah K</creatorcontrib><title>Thermal modulation of reaction equilibria controls mass transfer in CO2-binding organic liquids</title><title>Energy & environmental science</title><description>CO2-Binding organic liquids (CO2BOLs) are non-aqueous solvents which may reduce the parasitic energy of carbon capture processes. These solvents exhibit surprising mass transfer behavior: at fixed pressure driving force, the flux of CO2 into CO2BOLs decreases exponentially with increased temperature, a phenomenon not observed in aqueous amines. Here, we demonstrate that this phenomenon is primarily driven by a shift in reaction equilibrium, which reduces the degree to which chemical reactions enhance the CO2 flux. First-principles surface renewal models quantitatively reproduce mass transfer data for CO2 absorption into 2-EEMPA, IPADM-2-BOL and DBU:Hexanol across a range of temperatures. Density functional theory calculations are used to identify structural modifications likely to improve the CO2 flux. These findings reveal a fundamental trade-off between CO2 flux and the energy required for solvent regeneration, and provide a theoretical foundation for rational solvent design and the development of physics-informed mass transfer models.</description><subject>Amines</subject><subject>Binding</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Chemical reactions</subject><subject>Density functional theory</subject><subject>First principles</subject><subject>Fluctuations</subject><subject>Hexanol</subject><subject>Mass transfer</subject><subject>Organic liquids</subject><subject>Solvents</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1jctOwzAQRS0EEqWw4QsssQ5M7MRTL1HES6rUTVlHE8curhK7tZP_J-Kxumdzz2HsvoTHEqR-6oW1IIVEd8FWJdZVUSOoy39WWlyzm5yPAEoA6hVr9182jTTwMfbzQJOPgUfHkyXzw_Y8-8F3yRM3MUwpDpmPlDOfEoXsbOI-8GYnis6H3ocDj-lAwRs--OXZ51t25WjI9u5v1-zz9WXfvBfb3dtH87wtTqLUU9FhjYq0FAAlChLaVCiMdqYXiEAbIodKbUiiFrXtFLlaYQfKGLQEFcg1e_j1nlI8zzZP7THOKSzJdjEoLSsplfwG4jRWLw</recordid><startdate>20230216</startdate><enddate>20230216</enddate><creator>Moore, Thomas</creator><creator>Varni, Anthony J</creator><creator>Pang, Simon H</creator><creator>Akhade, Sneha A</creator><creator>Li, Sichi</creator><creator>Nguyen, Du T</creator><creator>Stolaroff, Joshuah K</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230216</creationdate><title>Thermal modulation of reaction equilibria controls mass transfer in CO2-binding organic liquids</title><author>Moore, Thomas ; Varni, Anthony J ; Pang, Simon H ; Akhade, Sneha A ; Li, Sichi ; Nguyen, Du T ; Stolaroff, Joshuah K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-b7576a93200172a29c472c9fcd2770a8aaf7668a37925eb6af567b06cc7ea0403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amines</topic><topic>Binding</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Chemical reactions</topic><topic>Density functional theory</topic><topic>First principles</topic><topic>Fluctuations</topic><topic>Hexanol</topic><topic>Mass transfer</topic><topic>Organic liquids</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Thomas</creatorcontrib><creatorcontrib>Varni, Anthony J</creatorcontrib><creatorcontrib>Pang, Simon H</creatorcontrib><creatorcontrib>Akhade, Sneha A</creatorcontrib><creatorcontrib>Li, Sichi</creatorcontrib><creatorcontrib>Nguyen, Du T</creatorcontrib><creatorcontrib>Stolaroff, Joshuah K</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Thomas</au><au>Varni, Anthony J</au><au>Pang, Simon H</au><au>Akhade, Sneha A</au><au>Li, Sichi</au><au>Nguyen, Du T</au><au>Stolaroff, Joshuah K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal modulation of reaction equilibria controls mass transfer in CO2-binding organic liquids</atitle><jtitle>Energy & environmental science</jtitle><date>2023-02-16</date><risdate>2023</risdate><volume>16</volume><issue>2</issue><spage>484</spage><epage>490</epage><pages>484-490</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>CO2-Binding organic liquids (CO2BOLs) are non-aqueous solvents which may reduce the parasitic energy of carbon capture processes. These solvents exhibit surprising mass transfer behavior: at fixed pressure driving force, the flux of CO2 into CO2BOLs decreases exponentially with increased temperature, a phenomenon not observed in aqueous amines. Here, we demonstrate that this phenomenon is primarily driven by a shift in reaction equilibrium, which reduces the degree to which chemical reactions enhance the CO2 flux. First-principles surface renewal models quantitatively reproduce mass transfer data for CO2 absorption into 2-EEMPA, IPADM-2-BOL and DBU:Hexanol across a range of temperatures. Density functional theory calculations are used to identify structural modifications likely to improve the CO2 flux. These findings reveal a fundamental trade-off between CO2 flux and the energy required for solvent regeneration, and provide a theoretical foundation for rational solvent design and the development of physics-informed mass transfer models.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ee03237f</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2023-02, Vol.16 (2), p.484-490 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2776934336 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Amines Binding Carbon dioxide Carbon sequestration Chemical reactions Density functional theory First principles Fluctuations Hexanol Mass transfer Organic liquids Solvents |
title | Thermal modulation of reaction equilibria controls mass transfer in CO2-binding organic liquids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20modulation%20of%20reaction%20equilibria%20controls%20mass%20transfer%20in%20CO2-binding%20organic%20liquids&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Moore,%20Thomas&rft.date=2023-02-16&rft.volume=16&rft.issue=2&rft.spage=484&rft.epage=490&rft.pages=484-490&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee03237f&rft_dat=%3Cproquest%3E2776934336%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776934336&rft_id=info:pmid/&rfr_iscdi=true |