Thermal modulation of reaction equilibria controls mass transfer in CO2-binding organic liquids

CO2-Binding organic liquids (CO2BOLs) are non-aqueous solvents which may reduce the parasitic energy of carbon capture processes. These solvents exhibit surprising mass transfer behavior: at fixed pressure driving force, the flux of CO2 into CO2BOLs decreases exponentially with increased temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2023-02, Vol.16 (2), p.484-490
Hauptverfasser: Moore, Thomas, Varni, Anthony J, Pang, Simon H, Akhade, Sneha A, Li, Sichi, Nguyen, Du T, Stolaroff, Joshuah K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 490
container_issue 2
container_start_page 484
container_title Energy & environmental science
container_volume 16
creator Moore, Thomas
Varni, Anthony J
Pang, Simon H
Akhade, Sneha A
Li, Sichi
Nguyen, Du T
Stolaroff, Joshuah K
description CO2-Binding organic liquids (CO2BOLs) are non-aqueous solvents which may reduce the parasitic energy of carbon capture processes. These solvents exhibit surprising mass transfer behavior: at fixed pressure driving force, the flux of CO2 into CO2BOLs decreases exponentially with increased temperature, a phenomenon not observed in aqueous amines. Here, we demonstrate that this phenomenon is primarily driven by a shift in reaction equilibrium, which reduces the degree to which chemical reactions enhance the CO2 flux. First-principles surface renewal models quantitatively reproduce mass transfer data for CO2 absorption into 2-EEMPA, IPADM-2-BOL and DBU:Hexanol across a range of temperatures. Density functional theory calculations are used to identify structural modifications likely to improve the CO2 flux. These findings reveal a fundamental trade-off between CO2 flux and the energy required for solvent regeneration, and provide a theoretical foundation for rational solvent design and the development of physics-informed mass transfer models.
doi_str_mv 10.1039/d2ee03237f
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2776934336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776934336</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-b7576a93200172a29c472c9fcd2770a8aaf7668a37925eb6af567b06cc7ea0403</originalsourceid><addsrcrecordid>eNo1jctOwzAQRS0EEqWw4QsssQ5M7MRTL1HES6rUTVlHE8curhK7tZP_J-Kxumdzz2HsvoTHEqR-6oW1IIVEd8FWJdZVUSOoy39WWlyzm5yPAEoA6hVr9182jTTwMfbzQJOPgUfHkyXzw_Y8-8F3yRM3MUwpDpmPlDOfEoXsbOI-8GYnis6H3ocDj-lAwRs--OXZ51t25WjI9u5v1-zz9WXfvBfb3dtH87wtTqLUU9FhjYq0FAAlChLaVCiMdqYXiEAbIodKbUiiFrXtFLlaYQfKGLQEFcg1e_j1nlI8zzZP7THOKSzJdjEoLSsplfwG4jRWLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776934336</pqid></control><display><type>article</type><title>Thermal modulation of reaction equilibria controls mass transfer in CO2-binding organic liquids</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Moore, Thomas ; Varni, Anthony J ; Pang, Simon H ; Akhade, Sneha A ; Li, Sichi ; Nguyen, Du T ; Stolaroff, Joshuah K</creator><creatorcontrib>Moore, Thomas ; Varni, Anthony J ; Pang, Simon H ; Akhade, Sneha A ; Li, Sichi ; Nguyen, Du T ; Stolaroff, Joshuah K</creatorcontrib><description>CO2-Binding organic liquids (CO2BOLs) are non-aqueous solvents which may reduce the parasitic energy of carbon capture processes. These solvents exhibit surprising mass transfer behavior: at fixed pressure driving force, the flux of CO2 into CO2BOLs decreases exponentially with increased temperature, a phenomenon not observed in aqueous amines. Here, we demonstrate that this phenomenon is primarily driven by a shift in reaction equilibrium, which reduces the degree to which chemical reactions enhance the CO2 flux. First-principles surface renewal models quantitatively reproduce mass transfer data for CO2 absorption into 2-EEMPA, IPADM-2-BOL and DBU:Hexanol across a range of temperatures. Density functional theory calculations are used to identify structural modifications likely to improve the CO2 flux. These findings reveal a fundamental trade-off between CO2 flux and the energy required for solvent regeneration, and provide a theoretical foundation for rational solvent design and the development of physics-informed mass transfer models.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee03237f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Amines ; Binding ; Carbon dioxide ; Carbon sequestration ; Chemical reactions ; Density functional theory ; First principles ; Fluctuations ; Hexanol ; Mass transfer ; Organic liquids ; Solvents</subject><ispartof>Energy &amp; environmental science, 2023-02, Vol.16 (2), p.484-490</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Moore, Thomas</creatorcontrib><creatorcontrib>Varni, Anthony J</creatorcontrib><creatorcontrib>Pang, Simon H</creatorcontrib><creatorcontrib>Akhade, Sneha A</creatorcontrib><creatorcontrib>Li, Sichi</creatorcontrib><creatorcontrib>Nguyen, Du T</creatorcontrib><creatorcontrib>Stolaroff, Joshuah K</creatorcontrib><title>Thermal modulation of reaction equilibria controls mass transfer in CO2-binding organic liquids</title><title>Energy &amp; environmental science</title><description>CO2-Binding organic liquids (CO2BOLs) are non-aqueous solvents which may reduce the parasitic energy of carbon capture processes. These solvents exhibit surprising mass transfer behavior: at fixed pressure driving force, the flux of CO2 into CO2BOLs decreases exponentially with increased temperature, a phenomenon not observed in aqueous amines. Here, we demonstrate that this phenomenon is primarily driven by a shift in reaction equilibrium, which reduces the degree to which chemical reactions enhance the CO2 flux. First-principles surface renewal models quantitatively reproduce mass transfer data for CO2 absorption into 2-EEMPA, IPADM-2-BOL and DBU:Hexanol across a range of temperatures. Density functional theory calculations are used to identify structural modifications likely to improve the CO2 flux. These findings reveal a fundamental trade-off between CO2 flux and the energy required for solvent regeneration, and provide a theoretical foundation for rational solvent design and the development of physics-informed mass transfer models.</description><subject>Amines</subject><subject>Binding</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Chemical reactions</subject><subject>Density functional theory</subject><subject>First principles</subject><subject>Fluctuations</subject><subject>Hexanol</subject><subject>Mass transfer</subject><subject>Organic liquids</subject><subject>Solvents</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1jctOwzAQRS0EEqWw4QsssQ5M7MRTL1HES6rUTVlHE8curhK7tZP_J-Kxumdzz2HsvoTHEqR-6oW1IIVEd8FWJdZVUSOoy39WWlyzm5yPAEoA6hVr9182jTTwMfbzQJOPgUfHkyXzw_Y8-8F3yRM3MUwpDpmPlDOfEoXsbOI-8GYnis6H3ocDj-lAwRs--OXZ51t25WjI9u5v1-zz9WXfvBfb3dtH87wtTqLUU9FhjYq0FAAlChLaVCiMdqYXiEAbIodKbUiiFrXtFLlaYQfKGLQEFcg1e_j1nlI8zzZP7THOKSzJdjEoLSsplfwG4jRWLw</recordid><startdate>20230216</startdate><enddate>20230216</enddate><creator>Moore, Thomas</creator><creator>Varni, Anthony J</creator><creator>Pang, Simon H</creator><creator>Akhade, Sneha A</creator><creator>Li, Sichi</creator><creator>Nguyen, Du T</creator><creator>Stolaroff, Joshuah K</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230216</creationdate><title>Thermal modulation of reaction equilibria controls mass transfer in CO2-binding organic liquids</title><author>Moore, Thomas ; Varni, Anthony J ; Pang, Simon H ; Akhade, Sneha A ; Li, Sichi ; Nguyen, Du T ; Stolaroff, Joshuah K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-b7576a93200172a29c472c9fcd2770a8aaf7668a37925eb6af567b06cc7ea0403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amines</topic><topic>Binding</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Chemical reactions</topic><topic>Density functional theory</topic><topic>First principles</topic><topic>Fluctuations</topic><topic>Hexanol</topic><topic>Mass transfer</topic><topic>Organic liquids</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Thomas</creatorcontrib><creatorcontrib>Varni, Anthony J</creatorcontrib><creatorcontrib>Pang, Simon H</creatorcontrib><creatorcontrib>Akhade, Sneha A</creatorcontrib><creatorcontrib>Li, Sichi</creatorcontrib><creatorcontrib>Nguyen, Du T</creatorcontrib><creatorcontrib>Stolaroff, Joshuah K</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Thomas</au><au>Varni, Anthony J</au><au>Pang, Simon H</au><au>Akhade, Sneha A</au><au>Li, Sichi</au><au>Nguyen, Du T</au><au>Stolaroff, Joshuah K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal modulation of reaction equilibria controls mass transfer in CO2-binding organic liquids</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2023-02-16</date><risdate>2023</risdate><volume>16</volume><issue>2</issue><spage>484</spage><epage>490</epage><pages>484-490</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>CO2-Binding organic liquids (CO2BOLs) are non-aqueous solvents which may reduce the parasitic energy of carbon capture processes. These solvents exhibit surprising mass transfer behavior: at fixed pressure driving force, the flux of CO2 into CO2BOLs decreases exponentially with increased temperature, a phenomenon not observed in aqueous amines. Here, we demonstrate that this phenomenon is primarily driven by a shift in reaction equilibrium, which reduces the degree to which chemical reactions enhance the CO2 flux. First-principles surface renewal models quantitatively reproduce mass transfer data for CO2 absorption into 2-EEMPA, IPADM-2-BOL and DBU:Hexanol across a range of temperatures. Density functional theory calculations are used to identify structural modifications likely to improve the CO2 flux. These findings reveal a fundamental trade-off between CO2 flux and the energy required for solvent regeneration, and provide a theoretical foundation for rational solvent design and the development of physics-informed mass transfer models.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ee03237f</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2023-02, Vol.16 (2), p.484-490
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2776934336
source Royal Society Of Chemistry Journals 2008-
subjects Amines
Binding
Carbon dioxide
Carbon sequestration
Chemical reactions
Density functional theory
First principles
Fluctuations
Hexanol
Mass transfer
Organic liquids
Solvents
title Thermal modulation of reaction equilibria controls mass transfer in CO2-binding organic liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20modulation%20of%20reaction%20equilibria%20controls%20mass%20transfer%20in%20CO2-binding%20organic%20liquids&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Moore,%20Thomas&rft.date=2023-02-16&rft.volume=16&rft.issue=2&rft.spage=484&rft.epage=490&rft.pages=484-490&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee03237f&rft_dat=%3Cproquest%3E2776934336%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776934336&rft_id=info:pmid/&rfr_iscdi=true