Pre-trained design optimization of variable stiffness composite cylinders modeled using Bézier curves

In this paper, a novel framework is proposed to optimize variable stiffness (VS) composite circular cylinders designed with the direct fiber path parameterization technique using cubic and quadratic Bézier curves as curvilinear fiber paths. The Bézier curves allow generating fiber paths with nonline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2023-02, Vol.66 (2), p.41, Article 41
Hauptverfasser: Coskun, Onur, Turkmen, Halit S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 41
container_title Structural and multidisciplinary optimization
container_volume 66
creator Coskun, Onur
Turkmen, Halit S.
description In this paper, a novel framework is proposed to optimize variable stiffness (VS) composite circular cylinders designed with the direct fiber path parameterization technique using cubic and quadratic Bézier curves as curvilinear fiber paths. The Bézier curves allow generating fiber paths with nonlinear angle variation, and they are defined by simple design variables such as segment/station angles and multipliers/curvatures. A finite element model of VS shells under pure bending with stiffness variation in circumferential direction due to axially shifted courses is implemented and optimized for maximum buckling load considering curvature and strength constraints. The proposed design optimization framework, called pre-trained multi-step/cycle surrogate-based optimization, is conducted in two steps using a non-dominated sorting genetic algorithm (NSGA-II). The framework leverages prior knowledge of the design space by using laminated VS shells with single ply definitions in the first step before performing the optimization of all VS plies in the second step. Four different stacking sequences are considered, consisting of all VS plies and partial VS plies in combination with unidirectional fibers. The VS composite shell modeled using cubic Bézier curves of constant curvature as the fiber path for all plies shows a 41% increase in buckling load compared to the reference quasi-isotropic composite cylindrical shell.
doi_str_mv 10.1007/s00158-022-03480-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2776857657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776857657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-eeb7123afdac94a652cb3db29b7930145af5690115dccb60bcd2d00e1d8f57423</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhosoOI6-gKuA6-pJ2jTtUgdvMKALBXchTU6GDL2ZtMM4b-Rz-GJWK7pzdc6B7_8PfFF0SuGcAoiLAEB5HgNjMSRpDvF2L5rRjPKYpnm-_7uLl8PoKIQ1AOSQFrPIPnqMe69cg4YYDG7VkLbrXe12qnfteFiyUd6pskISemdtgyEQ3dZdG1yPRL9VrjHoA6lbg9XYMgTXrMjVx_vOoSd68BsMx9GBVVXAk585j55vrp8Wd_Hy4fZ-cbmMNUuLPkYsBWWJskbpIlUZZ7pMTMmKUhQJ0JQry7MCKOVG6zKDUhtmAJCa3HKRsmQenU29nW9fBwy9XLeDb8aXkgmR5VxkXIwUmyjt2xA8Wtl5Vyv_JinIL59y8ilHn_Lbp9yOoWQKhRFuVuj_qv9JfQLz6Hwy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776857657</pqid></control><display><type>article</type><title>Pre-trained design optimization of variable stiffness composite cylinders modeled using Bézier curves</title><source>Springer Nature - Complete Springer Journals</source><creator>Coskun, Onur ; Turkmen, Halit S.</creator><creatorcontrib>Coskun, Onur ; Turkmen, Halit S.</creatorcontrib><description>In this paper, a novel framework is proposed to optimize variable stiffness (VS) composite circular cylinders designed with the direct fiber path parameterization technique using cubic and quadratic Bézier curves as curvilinear fiber paths. The Bézier curves allow generating fiber paths with nonlinear angle variation, and they are defined by simple design variables such as segment/station angles and multipliers/curvatures. A finite element model of VS shells under pure bending with stiffness variation in circumferential direction due to axially shifted courses is implemented and optimized for maximum buckling load considering curvature and strength constraints. The proposed design optimization framework, called pre-trained multi-step/cycle surrogate-based optimization, is conducted in two steps using a non-dominated sorting genetic algorithm (NSGA-II). The framework leverages prior knowledge of the design space by using laminated VS shells with single ply definitions in the first step before performing the optimization of all VS plies in the second step. Four different stacking sequences are considered, consisting of all VS plies and partial VS plies in combination with unidirectional fibers. The VS composite shell modeled using cubic Bézier curves of constant curvature as the fiber path for all plies shows a 41% increase in buckling load compared to the reference quasi-isotropic composite cylindrical shell.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-022-03480-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Buckling ; Circular cylinders ; Composite structures ; Computational Mathematics and Numerical Analysis ; Curvature ; Curves ; Cylindrical shells ; Design optimization ; Engineering ; Engineering Design ; Finite element method ; Genetic algorithms ; Industrial Application Paper ; Laminates ; Layers ; Mathematical models ; Parameterization ; Sorting algorithms ; Stiffness ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2023-02, Vol.66 (2), p.41, Article 41</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-eeb7123afdac94a652cb3db29b7930145af5690115dccb60bcd2d00e1d8f57423</citedby><cites>FETCH-LOGICAL-c249t-eeb7123afdac94a652cb3db29b7930145af5690115dccb60bcd2d00e1d8f57423</cites><orcidid>0000-0001-6059-7767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-022-03480-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-022-03480-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Coskun, Onur</creatorcontrib><creatorcontrib>Turkmen, Halit S.</creatorcontrib><title>Pre-trained design optimization of variable stiffness composite cylinders modeled using Bézier curves</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>In this paper, a novel framework is proposed to optimize variable stiffness (VS) composite circular cylinders designed with the direct fiber path parameterization technique using cubic and quadratic Bézier curves as curvilinear fiber paths. The Bézier curves allow generating fiber paths with nonlinear angle variation, and they are defined by simple design variables such as segment/station angles and multipliers/curvatures. A finite element model of VS shells under pure bending with stiffness variation in circumferential direction due to axially shifted courses is implemented and optimized for maximum buckling load considering curvature and strength constraints. The proposed design optimization framework, called pre-trained multi-step/cycle surrogate-based optimization, is conducted in two steps using a non-dominated sorting genetic algorithm (NSGA-II). The framework leverages prior knowledge of the design space by using laminated VS shells with single ply definitions in the first step before performing the optimization of all VS plies in the second step. Four different stacking sequences are considered, consisting of all VS plies and partial VS plies in combination with unidirectional fibers. The VS composite shell modeled using cubic Bézier curves of constant curvature as the fiber path for all plies shows a 41% increase in buckling load compared to the reference quasi-isotropic composite cylindrical shell.</description><subject>Buckling</subject><subject>Circular cylinders</subject><subject>Composite structures</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Curvature</subject><subject>Curves</subject><subject>Cylindrical shells</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Genetic algorithms</subject><subject>Industrial Application Paper</subject><subject>Laminates</subject><subject>Layers</subject><subject>Mathematical models</subject><subject>Parameterization</subject><subject>Sorting algorithms</subject><subject>Stiffness</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKxDAUhosoOI6-gKuA6-pJ2jTtUgdvMKALBXchTU6GDL2ZtMM4b-Rz-GJWK7pzdc6B7_8PfFF0SuGcAoiLAEB5HgNjMSRpDvF2L5rRjPKYpnm-_7uLl8PoKIQ1AOSQFrPIPnqMe69cg4YYDG7VkLbrXe12qnfteFiyUd6pskISemdtgyEQ3dZdG1yPRL9VrjHoA6lbg9XYMgTXrMjVx_vOoSd68BsMx9GBVVXAk585j55vrp8Wd_Hy4fZ-cbmMNUuLPkYsBWWJskbpIlUZZ7pMTMmKUhQJ0JQry7MCKOVG6zKDUhtmAJCa3HKRsmQenU29nW9fBwy9XLeDb8aXkgmR5VxkXIwUmyjt2xA8Wtl5Vyv_JinIL59y8ilHn_Lbp9yOoWQKhRFuVuj_qv9JfQLz6Hwy</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Coskun, Onur</creator><creator>Turkmen, Halit S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6059-7767</orcidid></search><sort><creationdate>20230201</creationdate><title>Pre-trained design optimization of variable stiffness composite cylinders modeled using Bézier curves</title><author>Coskun, Onur ; Turkmen, Halit S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-eeb7123afdac94a652cb3db29b7930145af5690115dccb60bcd2d00e1d8f57423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Buckling</topic><topic>Circular cylinders</topic><topic>Composite structures</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Curvature</topic><topic>Curves</topic><topic>Cylindrical shells</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Genetic algorithms</topic><topic>Industrial Application Paper</topic><topic>Laminates</topic><topic>Layers</topic><topic>Mathematical models</topic><topic>Parameterization</topic><topic>Sorting algorithms</topic><topic>Stiffness</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coskun, Onur</creatorcontrib><creatorcontrib>Turkmen, Halit S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coskun, Onur</au><au>Turkmen, Halit S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre-trained design optimization of variable stiffness composite cylinders modeled using Bézier curves</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>66</volume><issue>2</issue><spage>41</spage><pages>41-</pages><artnum>41</artnum><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>In this paper, a novel framework is proposed to optimize variable stiffness (VS) composite circular cylinders designed with the direct fiber path parameterization technique using cubic and quadratic Bézier curves as curvilinear fiber paths. The Bézier curves allow generating fiber paths with nonlinear angle variation, and they are defined by simple design variables such as segment/station angles and multipliers/curvatures. A finite element model of VS shells under pure bending with stiffness variation in circumferential direction due to axially shifted courses is implemented and optimized for maximum buckling load considering curvature and strength constraints. The proposed design optimization framework, called pre-trained multi-step/cycle surrogate-based optimization, is conducted in two steps using a non-dominated sorting genetic algorithm (NSGA-II). The framework leverages prior knowledge of the design space by using laminated VS shells with single ply definitions in the first step before performing the optimization of all VS plies in the second step. Four different stacking sequences are considered, consisting of all VS plies and partial VS plies in combination with unidirectional fibers. The VS composite shell modeled using cubic Bézier curves of constant curvature as the fiber path for all plies shows a 41% increase in buckling load compared to the reference quasi-isotropic composite cylindrical shell.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-022-03480-x</doi><orcidid>https://orcid.org/0000-0001-6059-7767</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2023-02, Vol.66 (2), p.41, Article 41
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2776857657
source Springer Nature - Complete Springer Journals
subjects Buckling
Circular cylinders
Composite structures
Computational Mathematics and Numerical Analysis
Curvature
Curves
Cylindrical shells
Design optimization
Engineering
Engineering Design
Finite element method
Genetic algorithms
Industrial Application Paper
Laminates
Layers
Mathematical models
Parameterization
Sorting algorithms
Stiffness
Theoretical and Applied Mechanics
title Pre-trained design optimization of variable stiffness composite cylinders modeled using Bézier curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-trained%20design%20optimization%20of%20variable%20stiffness%20composite%20cylinders%20modeled%20using%20B%C3%A9zier%20curves&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Coskun,%20Onur&rft.date=2023-02-01&rft.volume=66&rft.issue=2&rft.spage=41&rft.pages=41-&rft.artnum=41&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-022-03480-x&rft_dat=%3Cproquest_cross%3E2776857657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776857657&rft_id=info:pmid/&rfr_iscdi=true