Is energy intensity a driver of structural change? Empirical evidence from the global economy
Input–output tables (IOTs) provide a relevant picture of economic structure as they represent the composition and interindustry relationships of an economy. The technical coefficients matrix (A matrix) is considered to capture the technological status of an economy; so, it is of special relevance fo...
Gespeichert in:
Veröffentlicht in: | Journal of industrial ecology 2023-02, Vol.27 (1), p.283-296 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 296 |
---|---|
container_issue | 1 |
container_start_page | 283 |
container_title | Journal of industrial ecology |
container_volume | 27 |
creator | Nieto, Jaime Moyano, Pedro B. Moyano, Diego Miguel, Luis Javier |
description | Input–output tables (IOTs) provide a relevant picture of economic structure as they represent the composition and interindustry relationships of an economy. The technical coefficients matrix (A matrix) is considered to capture the technological status of an economy; so, it is of special relevance for the evaluation of long‐term, structural transformations, such as sustainability transitions in integrated assessment models (IAMs). The A matrix has typically been considered either static or exogenous. Endogenous structural change has rarely been applied to models. The objective of this paper is to analyze energy intensity, a widely used variable in IAMs, and its role as a driver of structural change. We therefore identify the most relevant technical coefficients in the IOTs time series and estimate an econometric model based on the energy intensity of five different final end‐use energy sources. The results of this analysis show that energy intensity has a significant influence on the evolution of the A matrix and should therefore be taken into consideration when analyzing endogenous structural change in models. |
doi_str_mv | 10.1111/jiec.13352 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2776422336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776422336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3372-cb3fbc87118fc952ba2a9e49a6cce0204e7e3de5f939eaace6e8907bd07809b53</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKsXf0HAm7A1j-4jJ5HSaqXgRY8SstlJm7Kb1GS3sv_erevZucww880MfAjdUjKjQzzsLegZ5TxlZ2hCU04SwQQ5H2pSFAkVBblEVzHuCaE8Y2SCPtcRg4Ow7bF1Lbho2x4rXAV7hIC9wbENnW67oGqsd8pt4REvm4MNVg8dONoKnAZsgm9wuwO8rX15GmjvfNNfowuj6gg3f3mKPlbL98VLsnl7Xi-eNonmPGeJLrkpdZFTWhgtUlYqpgTMhcq0BsLIHHLgFaRGcAFKacigECQvK5IXRJQpn6K78e4h-K8OYiv3vgtueClZnmdzxjjPBup-pHTwMQYw8hBso0IvKZEnffKkT_7qG2A6wt-2hv4fUr6ul4tx5wd0R3Nd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776422336</pqid></control><display><type>article</type><title>Is energy intensity a driver of structural change? Empirical evidence from the global economy</title><source>Wiley Online Library All Journals</source><creator>Nieto, Jaime ; Moyano, Pedro B. ; Moyano, Diego ; Miguel, Luis Javier</creator><creatorcontrib>Nieto, Jaime ; Moyano, Pedro B. ; Moyano, Diego ; Miguel, Luis Javier</creatorcontrib><description>Input–output tables (IOTs) provide a relevant picture of economic structure as they represent the composition and interindustry relationships of an economy. The technical coefficients matrix (A matrix) is considered to capture the technological status of an economy; so, it is of special relevance for the evaluation of long‐term, structural transformations, such as sustainability transitions in integrated assessment models (IAMs). The A matrix has typically been considered either static or exogenous. Endogenous structural change has rarely been applied to models. The objective of this paper is to analyze energy intensity, a widely used variable in IAMs, and its role as a driver of structural change. We therefore identify the most relevant technical coefficients in the IOTs time series and estimate an econometric model based on the energy intensity of five different final end‐use energy sources. The results of this analysis show that energy intensity has a significant influence on the evolution of the A matrix and should therefore be taken into consideration when analyzing endogenous structural change in models.</description><identifier>ISSN: 1088-1980</identifier><identifier>EISSN: 1530-9290</identifier><identifier>DOI: 10.1111/jiec.13352</identifier><language>eng</language><publisher>New Haven: Wiley Subscription Services, Inc</publisher><subject>Econometrics ; Economic structure ; Economics ; Empirical analysis ; Endogenous ; Energy ; energy efficiency ; Energy sources ; Energy utilization ; Global economy ; industrial ecology ; industrial metabolism ; input–output analysis (IOA) ; Mathematical models ; Structural change ; Sustainability transitions ; technical coefficients ; Time series</subject><ispartof>Journal of industrial ecology, 2023-02, Vol.27 (1), p.283-296</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Industrial Ecology.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3372-cb3fbc87118fc952ba2a9e49a6cce0204e7e3de5f939eaace6e8907bd07809b53</citedby><cites>FETCH-LOGICAL-c3372-cb3fbc87118fc952ba2a9e49a6cce0204e7e3de5f939eaace6e8907bd07809b53</cites><orcidid>0000-0002-8243-8596 ; 0000-0002-4767-573X ; 0000-0002-8925-4319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjiec.13352$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjiec.13352$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Nieto, Jaime</creatorcontrib><creatorcontrib>Moyano, Pedro B.</creatorcontrib><creatorcontrib>Moyano, Diego</creatorcontrib><creatorcontrib>Miguel, Luis Javier</creatorcontrib><title>Is energy intensity a driver of structural change? Empirical evidence from the global economy</title><title>Journal of industrial ecology</title><description>Input–output tables (IOTs) provide a relevant picture of economic structure as they represent the composition and interindustry relationships of an economy. The technical coefficients matrix (A matrix) is considered to capture the technological status of an economy; so, it is of special relevance for the evaluation of long‐term, structural transformations, such as sustainability transitions in integrated assessment models (IAMs). The A matrix has typically been considered either static or exogenous. Endogenous structural change has rarely been applied to models. The objective of this paper is to analyze energy intensity, a widely used variable in IAMs, and its role as a driver of structural change. We therefore identify the most relevant technical coefficients in the IOTs time series and estimate an econometric model based on the energy intensity of five different final end‐use energy sources. The results of this analysis show that energy intensity has a significant influence on the evolution of the A matrix and should therefore be taken into consideration when analyzing endogenous structural change in models.</description><subject>Econometrics</subject><subject>Economic structure</subject><subject>Economics</subject><subject>Empirical analysis</subject><subject>Endogenous</subject><subject>Energy</subject><subject>energy efficiency</subject><subject>Energy sources</subject><subject>Energy utilization</subject><subject>Global economy</subject><subject>industrial ecology</subject><subject>industrial metabolism</subject><subject>input–output analysis (IOA)</subject><subject>Mathematical models</subject><subject>Structural change</subject><subject>Sustainability transitions</subject><subject>technical coefficients</subject><subject>Time series</subject><issn>1088-1980</issn><issn>1530-9290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kEtLAzEQgIMoWKsXf0HAm7A1j-4jJ5HSaqXgRY8SstlJm7Kb1GS3sv_erevZucww880MfAjdUjKjQzzsLegZ5TxlZ2hCU04SwQQ5H2pSFAkVBblEVzHuCaE8Y2SCPtcRg4Ow7bF1Lbho2x4rXAV7hIC9wbENnW67oGqsd8pt4REvm4MNVg8dONoKnAZsgm9wuwO8rX15GmjvfNNfowuj6gg3f3mKPlbL98VLsnl7Xi-eNonmPGeJLrkpdZFTWhgtUlYqpgTMhcq0BsLIHHLgFaRGcAFKacigECQvK5IXRJQpn6K78e4h-K8OYiv3vgtueClZnmdzxjjPBup-pHTwMQYw8hBso0IvKZEnffKkT_7qG2A6wt-2hv4fUr6ul4tx5wd0R3Nd</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Nieto, Jaime</creator><creator>Moyano, Pedro B.</creator><creator>Moyano, Diego</creator><creator>Miguel, Luis Javier</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8243-8596</orcidid><orcidid>https://orcid.org/0000-0002-4767-573X</orcidid><orcidid>https://orcid.org/0000-0002-8925-4319</orcidid></search><sort><creationdate>202302</creationdate><title>Is energy intensity a driver of structural change? Empirical evidence from the global economy</title><author>Nieto, Jaime ; Moyano, Pedro B. ; Moyano, Diego ; Miguel, Luis Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3372-cb3fbc87118fc952ba2a9e49a6cce0204e7e3de5f939eaace6e8907bd07809b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Econometrics</topic><topic>Economic structure</topic><topic>Economics</topic><topic>Empirical analysis</topic><topic>Endogenous</topic><topic>Energy</topic><topic>energy efficiency</topic><topic>Energy sources</topic><topic>Energy utilization</topic><topic>Global economy</topic><topic>industrial ecology</topic><topic>industrial metabolism</topic><topic>input–output analysis (IOA)</topic><topic>Mathematical models</topic><topic>Structural change</topic><topic>Sustainability transitions</topic><topic>technical coefficients</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nieto, Jaime</creatorcontrib><creatorcontrib>Moyano, Pedro B.</creatorcontrib><creatorcontrib>Moyano, Diego</creatorcontrib><creatorcontrib>Miguel, Luis Javier</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>Journal of industrial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nieto, Jaime</au><au>Moyano, Pedro B.</au><au>Moyano, Diego</au><au>Miguel, Luis Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is energy intensity a driver of structural change? Empirical evidence from the global economy</atitle><jtitle>Journal of industrial ecology</jtitle><date>2023-02</date><risdate>2023</risdate><volume>27</volume><issue>1</issue><spage>283</spage><epage>296</epage><pages>283-296</pages><issn>1088-1980</issn><eissn>1530-9290</eissn><abstract>Input–output tables (IOTs) provide a relevant picture of economic structure as they represent the composition and interindustry relationships of an economy. The technical coefficients matrix (A matrix) is considered to capture the technological status of an economy; so, it is of special relevance for the evaluation of long‐term, structural transformations, such as sustainability transitions in integrated assessment models (IAMs). The A matrix has typically been considered either static or exogenous. Endogenous structural change has rarely been applied to models. The objective of this paper is to analyze energy intensity, a widely used variable in IAMs, and its role as a driver of structural change. We therefore identify the most relevant technical coefficients in the IOTs time series and estimate an econometric model based on the energy intensity of five different final end‐use energy sources. The results of this analysis show that energy intensity has a significant influence on the evolution of the A matrix and should therefore be taken into consideration when analyzing endogenous structural change in models.</abstract><cop>New Haven</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jiec.13352</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8243-8596</orcidid><orcidid>https://orcid.org/0000-0002-4767-573X</orcidid><orcidid>https://orcid.org/0000-0002-8925-4319</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-1980 |
ispartof | Journal of industrial ecology, 2023-02, Vol.27 (1), p.283-296 |
issn | 1088-1980 1530-9290 |
language | eng |
recordid | cdi_proquest_journals_2776422336 |
source | Wiley Online Library All Journals |
subjects | Econometrics Economic structure Economics Empirical analysis Endogenous Energy energy efficiency Energy sources Energy utilization Global economy industrial ecology industrial metabolism input–output analysis (IOA) Mathematical models Structural change Sustainability transitions technical coefficients Time series |
title | Is energy intensity a driver of structural change? Empirical evidence from the global economy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20energy%20intensity%20a%20driver%20of%20structural%20change?%20Empirical%20evidence%20from%20the%20global%20economy&rft.jtitle=Journal%20of%20industrial%20ecology&rft.au=Nieto,%20Jaime&rft.date=2023-02&rft.volume=27&rft.issue=1&rft.spage=283&rft.epage=296&rft.pages=283-296&rft.issn=1088-1980&rft.eissn=1530-9290&rft_id=info:doi/10.1111/jiec.13352&rft_dat=%3Cproquest_cross%3E2776422336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776422336&rft_id=info:pmid/&rfr_iscdi=true |