Digital Twin Tracking Dataset (DTTD): A New RGB+Depth 3D Dataset for Longer-Range Object Tracking Applications
Digital twin is a problem of augmenting real objects with their digital counterparts. It can underpin a wide range of applications in augmented reality (AR), autonomy, and UI/UX. A critical component in a good digital-twin system is real-time, accurate 3D object tracking. Most existing works solve 3...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Feng, Weiyu Zhao, Seth Z Pan, Chuanyu Chang, Adam Chen, Yichen Wang, Zekun Yang, Allen Y |
description | Digital twin is a problem of augmenting real objects with their digital counterparts. It can underpin a wide range of applications in augmented reality (AR), autonomy, and UI/UX. A critical component in a good digital-twin system is real-time, accurate 3D object tracking. Most existing works solve 3D object tracking through the lens of robotic grasping, employ older generations of depth sensors, and measure performance metrics that may not apply to other digital-twin applications such as in AR. In this work, we create a novel RGB-D dataset, called Digital Twin Tracking Dataset (DTTD), to enable further research of the problem and extend potential solutions towards longer ranges and mm localization accuracy. To reduce point cloud noise from the input source, we select the latest Microsoft Azure Kinect as the state-of-the-art time-of-flight (ToF) camera. In total, 103 scenes of 10 common off-the-shelf objects with rich textures are recorded, with each frame annotated with a per-pixel semantic segmentation and ground-truth object poses provided by a commercial motion capturing system. Through extensive experiments with model-level and dataset-level analysis, we demonstrate that DTTD can help researchers develop future object tracking methods and analyze new challenges. The dataset, data generation, annotation, and model evaluation pipeline are made publicly available as open source code at: https://github.com/augcog/DTTDv1. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2776280417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776280417</sourcerecordid><originalsourceid>FETCH-proquest_journals_27762804173</originalsourceid><addsrcrecordid>eNqNjL0KwjAYAIMgKNp3-MBFkUKbtEbcqvFnEAXJLrHEmlqSmKT4-jqIrk433HEd1MeEpPE8w7iHIu_rJEnwjOI8J32kmapUEA3wp9LAnSjvSlfARBBeBhgzztlkAQUc5BNO2-WUSRtuQNg3uRoHe6Mr6eKTeAOOl1qW4fcqrG1UKYIy2g9R9yoaL6MPB2i0WfPVLrbOPFrpw7k2rdNvdcaUzvA8yVJK_qteNtRG-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776280417</pqid></control><display><type>article</type><title>Digital Twin Tracking Dataset (DTTD): A New RGB+Depth 3D Dataset for Longer-Range Object Tracking Applications</title><source>Free E- Journals</source><creator>Feng, Weiyu ; Zhao, Seth Z ; Pan, Chuanyu ; Chang, Adam ; Chen, Yichen ; Wang, Zekun ; Yang, Allen Y</creator><creatorcontrib>Feng, Weiyu ; Zhao, Seth Z ; Pan, Chuanyu ; Chang, Adam ; Chen, Yichen ; Wang, Zekun ; Yang, Allen Y</creatorcontrib><description>Digital twin is a problem of augmenting real objects with their digital counterparts. It can underpin a wide range of applications in augmented reality (AR), autonomy, and UI/UX. A critical component in a good digital-twin system is real-time, accurate 3D object tracking. Most existing works solve 3D object tracking through the lens of robotic grasping, employ older generations of depth sensors, and measure performance metrics that may not apply to other digital-twin applications such as in AR. In this work, we create a novel RGB-D dataset, called Digital Twin Tracking Dataset (DTTD), to enable further research of the problem and extend potential solutions towards longer ranges and mm localization accuracy. To reduce point cloud noise from the input source, we select the latest Microsoft Azure Kinect as the state-of-the-art time-of-flight (ToF) camera. In total, 103 scenes of 10 common off-the-shelf objects with rich textures are recorded, with each frame annotated with a per-pixel semantic segmentation and ground-truth object poses provided by a commercial motion capturing system. Through extensive experiments with model-level and dataset-level analysis, we demonstrate that DTTD can help researchers develop future object tracking methods and analyze new challenges. The dataset, data generation, annotation, and model evaluation pipeline are made publicly available as open source code at: https://github.com/augcog/DTTDv1.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Augmented reality ; Critical components ; Datasets ; Digital twins ; Grasping (robotics) ; Image annotation ; Performance measurement ; Source code ; Tracking</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Feng, Weiyu</creatorcontrib><creatorcontrib>Zhao, Seth Z</creatorcontrib><creatorcontrib>Pan, Chuanyu</creatorcontrib><creatorcontrib>Chang, Adam</creatorcontrib><creatorcontrib>Chen, Yichen</creatorcontrib><creatorcontrib>Wang, Zekun</creatorcontrib><creatorcontrib>Yang, Allen Y</creatorcontrib><title>Digital Twin Tracking Dataset (DTTD): A New RGB+Depth 3D Dataset for Longer-Range Object Tracking Applications</title><title>arXiv.org</title><description>Digital twin is a problem of augmenting real objects with their digital counterparts. It can underpin a wide range of applications in augmented reality (AR), autonomy, and UI/UX. A critical component in a good digital-twin system is real-time, accurate 3D object tracking. Most existing works solve 3D object tracking through the lens of robotic grasping, employ older generations of depth sensors, and measure performance metrics that may not apply to other digital-twin applications such as in AR. In this work, we create a novel RGB-D dataset, called Digital Twin Tracking Dataset (DTTD), to enable further research of the problem and extend potential solutions towards longer ranges and mm localization accuracy. To reduce point cloud noise from the input source, we select the latest Microsoft Azure Kinect as the state-of-the-art time-of-flight (ToF) camera. In total, 103 scenes of 10 common off-the-shelf objects with rich textures are recorded, with each frame annotated with a per-pixel semantic segmentation and ground-truth object poses provided by a commercial motion capturing system. Through extensive experiments with model-level and dataset-level analysis, we demonstrate that DTTD can help researchers develop future object tracking methods and analyze new challenges. The dataset, data generation, annotation, and model evaluation pipeline are made publicly available as open source code at: https://github.com/augcog/DTTDv1.</description><subject>Augmented reality</subject><subject>Critical components</subject><subject>Datasets</subject><subject>Digital twins</subject><subject>Grasping (robotics)</subject><subject>Image annotation</subject><subject>Performance measurement</subject><subject>Source code</subject><subject>Tracking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAYAIMgKNp3-MBFkUKbtEbcqvFnEAXJLrHEmlqSmKT4-jqIrk433HEd1MeEpPE8w7iHIu_rJEnwjOI8J32kmapUEA3wp9LAnSjvSlfARBBeBhgzztlkAQUc5BNO2-WUSRtuQNg3uRoHe6Mr6eKTeAOOl1qW4fcqrG1UKYIy2g9R9yoaL6MPB2i0WfPVLrbOPFrpw7k2rdNvdcaUzvA8yVJK_qteNtRG-w</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Feng, Weiyu</creator><creator>Zhao, Seth Z</creator><creator>Pan, Chuanyu</creator><creator>Chang, Adam</creator><creator>Chen, Yichen</creator><creator>Wang, Zekun</creator><creator>Yang, Allen Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230411</creationdate><title>Digital Twin Tracking Dataset (DTTD): A New RGB+Depth 3D Dataset for Longer-Range Object Tracking Applications</title><author>Feng, Weiyu ; Zhao, Seth Z ; Pan, Chuanyu ; Chang, Adam ; Chen, Yichen ; Wang, Zekun ; Yang, Allen Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27762804173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Augmented reality</topic><topic>Critical components</topic><topic>Datasets</topic><topic>Digital twins</topic><topic>Grasping (robotics)</topic><topic>Image annotation</topic><topic>Performance measurement</topic><topic>Source code</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Weiyu</creatorcontrib><creatorcontrib>Zhao, Seth Z</creatorcontrib><creatorcontrib>Pan, Chuanyu</creatorcontrib><creatorcontrib>Chang, Adam</creatorcontrib><creatorcontrib>Chen, Yichen</creatorcontrib><creatorcontrib>Wang, Zekun</creatorcontrib><creatorcontrib>Yang, Allen Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Weiyu</au><au>Zhao, Seth Z</au><au>Pan, Chuanyu</au><au>Chang, Adam</au><au>Chen, Yichen</au><au>Wang, Zekun</au><au>Yang, Allen Y</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Digital Twin Tracking Dataset (DTTD): A New RGB+Depth 3D Dataset for Longer-Range Object Tracking Applications</atitle><jtitle>arXiv.org</jtitle><date>2023-04-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Digital twin is a problem of augmenting real objects with their digital counterparts. It can underpin a wide range of applications in augmented reality (AR), autonomy, and UI/UX. A critical component in a good digital-twin system is real-time, accurate 3D object tracking. Most existing works solve 3D object tracking through the lens of robotic grasping, employ older generations of depth sensors, and measure performance metrics that may not apply to other digital-twin applications such as in AR. In this work, we create a novel RGB-D dataset, called Digital Twin Tracking Dataset (DTTD), to enable further research of the problem and extend potential solutions towards longer ranges and mm localization accuracy. To reduce point cloud noise from the input source, we select the latest Microsoft Azure Kinect as the state-of-the-art time-of-flight (ToF) camera. In total, 103 scenes of 10 common off-the-shelf objects with rich textures are recorded, with each frame annotated with a per-pixel semantic segmentation and ground-truth object poses provided by a commercial motion capturing system. Through extensive experiments with model-level and dataset-level analysis, we demonstrate that DTTD can help researchers develop future object tracking methods and analyze new challenges. The dataset, data generation, annotation, and model evaluation pipeline are made publicly available as open source code at: https://github.com/augcog/DTTDv1.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2776280417 |
source | Free E- Journals |
subjects | Augmented reality Critical components Datasets Digital twins Grasping (robotics) Image annotation Performance measurement Source code Tracking |
title | Digital Twin Tracking Dataset (DTTD): A New RGB+Depth 3D Dataset for Longer-Range Object Tracking Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Digital%20Twin%20Tracking%20Dataset%20(DTTD):%20A%20New%20RGB+Depth%203D%20Dataset%20for%20Longer-Range%20Object%20Tracking%20Applications&rft.jtitle=arXiv.org&rft.au=Feng,%20Weiyu&rft.date=2023-04-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2776280417%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776280417&rft_id=info:pmid/&rfr_iscdi=true |