Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas

Adsorption processes are expected to play an important role in carbon dioxide capture, utilization and storage (CCUS). In particular, blast furnace gas (BFG) from the steel industry is one of the major sources of CO 2 emissions, and reducing emissions from this source is a major challenge. BFG can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Adsorption : journal of the International Adsorption Society 2023, Vol.29 (1), p.9-27, Article 9
Hauptverfasser: Kakiuchi, Toji, Yajima, Tomoyuki, Shigaki, Nobuyuki, Kawajiri, Yoshiaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 9
container_title Adsorption : journal of the International Adsorption Society
container_volume 29
creator Kakiuchi, Toji
Yajima, Tomoyuki
Shigaki, Nobuyuki
Kawajiri, Yoshiaki
description Adsorption processes are expected to play an important role in carbon dioxide capture, utilization and storage (CCUS). In particular, blast furnace gas (BFG) from the steel industry is one of the major sources of CO 2 emissions, and reducing emissions from this source is a major challenge. BFG can be treated as valuable hydrogen (H 2 ) source through water gas shift reactions, which may allow synthesis of methane and methanol if the purification of these two gases is possible. This study proposes and designs a new Vacuum Pressure Swing Adsorption (VPSA) process that consists of two tandem adsorption columns for simultaneous separation of H 2 and CO 2 from BFG. A mathematical model is developed to predict the performance of the proposed process. The model is fitted to the experimental data using a VPSA pilot plant, which were demonstrated to predict flow rates within an error of 6%. Furthermore, the model was used to perform multi-objective optimization to analyze trade-offs among throughput, energy consumption, CO 2 purity, and recovery. Finally, we analyzed the optimal design and operating conditions such as pressure and column height.
doi_str_mv 10.1007/s10450-022-00371-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2776071234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776071234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b54a51f63c87b0d1ebbc9e6c13ff00abd453cf396daf065ee2f5ccee84da8f5b3</originalsourceid><addsrcrecordid>eNp9kcFu1TAQRS1EJR6lP8DKEuuAHcdxskQVUKRW3cA6cuxx6iqxg8ehr5_Dn9bNQ0Ji0dXMYs69o3sJec_ZR86Y-oScNZJVrK4rxoTi1fEVOXCp6qpTUr0mB9bXfSVbpt6Qt4j3jLG-VeJA_txEC7MPE9XB0rhmv-iZWkA_BRodXbY5exOXNQYImf7WZtsWuiZA3BJQfNhRizGNkKiLiaJ_ZnSAuCFFWHXS2cddzOg0ls36ePQWdse7R5viBIG6FBfqg90wJ19eeNCYgU4a35Ezp2eEi7_znPz8-uXH5VV1ffvt--Xn68qIVuRqlI2W3LXCdGpklsM4mh5aw4VzjOnRNlIYJ_rWasdaCVA7aQxA11jdOTmKc_LhpLum-GsDzMN93FIolkOtVEmO16IpV_XpyqSImMANayqRpceBs-G5iuFUxVCqGPYqhmOBuv8g4_OeSk7azy-j4oRi8QkTpH9fvUA9Ab31pT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776071234</pqid></control><display><type>article</type><title>Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kakiuchi, Toji ; Yajima, Tomoyuki ; Shigaki, Nobuyuki ; Kawajiri, Yoshiaki</creator><creatorcontrib>Kakiuchi, Toji ; Yajima, Tomoyuki ; Shigaki, Nobuyuki ; Kawajiri, Yoshiaki</creatorcontrib><description>Adsorption processes are expected to play an important role in carbon dioxide capture, utilization and storage (CCUS). In particular, blast furnace gas (BFG) from the steel industry is one of the major sources of CO 2 emissions, and reducing emissions from this source is a major challenge. BFG can be treated as valuable hydrogen (H 2 ) source through water gas shift reactions, which may allow synthesis of methane and methanol if the purification of these two gases is possible. This study proposes and designs a new Vacuum Pressure Swing Adsorption (VPSA) process that consists of two tandem adsorption columns for simultaneous separation of H 2 and CO 2 from BFG. A mathematical model is developed to predict the performance of the proposed process. The model is fitted to the experimental data using a VPSA pilot plant, which were demonstrated to predict flow rates within an error of 6%. Furthermore, the model was used to perform multi-objective optimization to analyze trade-offs among throughput, energy consumption, CO 2 purity, and recovery. Finally, we analyzed the optimal design and operating conditions such as pressure and column height.</description><identifier>ISSN: 0929-5607</identifier><identifier>ISSN: 1572-8757</identifier><identifier>EISSN: 1572-8757</identifier><identifier>DOI: 10.1007/s10450-022-00371-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adsorption ; Blast furnace gas ; Carbon dioxide ; Carbon sequestration ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Design optimization ; Energy consumption ; Engineering Thermodynamics ; Exhaust gases ; Flow velocity ; Gases ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Industrial wastes ; Iron and steel industry ; Mathematical models ; Multiple objective analysis ; Optimization ; Pressure swing adsorption ; Separation ; Shift reaction ; Surfaces and Interfaces ; Thin Films ; Water gas</subject><ispartof>Adsorption : journal of the International Adsorption Society, 2023, Vol.29 (1), p.9-27, Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b54a51f63c87b0d1ebbc9e6c13ff00abd453cf396daf065ee2f5ccee84da8f5b3</citedby><cites>FETCH-LOGICAL-c363t-b54a51f63c87b0d1ebbc9e6c13ff00abd453cf396daf065ee2f5ccee84da8f5b3</cites><orcidid>0000-0002-7124-1704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10450-022-00371-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10450-022-00371-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kakiuchi, Toji</creatorcontrib><creatorcontrib>Yajima, Tomoyuki</creatorcontrib><creatorcontrib>Shigaki, Nobuyuki</creatorcontrib><creatorcontrib>Kawajiri, Yoshiaki</creatorcontrib><title>Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas</title><title>Adsorption : journal of the International Adsorption Society</title><addtitle>Adsorption</addtitle><description>Adsorption processes are expected to play an important role in carbon dioxide capture, utilization and storage (CCUS). In particular, blast furnace gas (BFG) from the steel industry is one of the major sources of CO 2 emissions, and reducing emissions from this source is a major challenge. BFG can be treated as valuable hydrogen (H 2 ) source through water gas shift reactions, which may allow synthesis of methane and methanol if the purification of these two gases is possible. This study proposes and designs a new Vacuum Pressure Swing Adsorption (VPSA) process that consists of two tandem adsorption columns for simultaneous separation of H 2 and CO 2 from BFG. A mathematical model is developed to predict the performance of the proposed process. The model is fitted to the experimental data using a VPSA pilot plant, which were demonstrated to predict flow rates within an error of 6%. Furthermore, the model was used to perform multi-objective optimization to analyze trade-offs among throughput, energy consumption, CO 2 purity, and recovery. Finally, we analyzed the optimal design and operating conditions such as pressure and column height.</description><subject>Adsorption</subject><subject>Blast furnace gas</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Design optimization</subject><subject>Energy consumption</subject><subject>Engineering Thermodynamics</subject><subject>Exhaust gases</subject><subject>Flow velocity</subject><subject>Gases</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Industrial wastes</subject><subject>Iron and steel industry</subject><subject>Mathematical models</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pressure swing adsorption</subject><subject>Separation</subject><subject>Shift reaction</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Water gas</subject><issn>0929-5607</issn><issn>1572-8757</issn><issn>1572-8757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1TAQRS1EJR6lP8DKEuuAHcdxskQVUKRW3cA6cuxx6iqxg8ehr5_Dn9bNQ0Ji0dXMYs69o3sJec_ZR86Y-oScNZJVrK4rxoTi1fEVOXCp6qpTUr0mB9bXfSVbpt6Qt4j3jLG-VeJA_txEC7MPE9XB0rhmv-iZWkA_BRodXbY5exOXNQYImf7WZtsWuiZA3BJQfNhRizGNkKiLiaJ_ZnSAuCFFWHXS2cddzOg0ls36ePQWdse7R5viBIG6FBfqg90wJ19eeNCYgU4a35Ezp2eEi7_znPz8-uXH5VV1ffvt--Xn68qIVuRqlI2W3LXCdGpklsM4mh5aw4VzjOnRNlIYJ_rWasdaCVA7aQxA11jdOTmKc_LhpLum-GsDzMN93FIolkOtVEmO16IpV_XpyqSImMANayqRpceBs-G5iuFUxVCqGPYqhmOBuv8g4_OeSk7azy-j4oRi8QkTpH9fvUA9Ab31pT0</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kakiuchi, Toji</creator><creator>Yajima, Tomoyuki</creator><creator>Shigaki, Nobuyuki</creator><creator>Kawajiri, Yoshiaki</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7124-1704</orcidid></search><sort><creationdate>2023</creationdate><title>Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas</title><author>Kakiuchi, Toji ; Yajima, Tomoyuki ; Shigaki, Nobuyuki ; Kawajiri, Yoshiaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b54a51f63c87b0d1ebbc9e6c13ff00abd453cf396daf065ee2f5ccee84da8f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Blast furnace gas</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Design optimization</topic><topic>Energy consumption</topic><topic>Engineering Thermodynamics</topic><topic>Exhaust gases</topic><topic>Flow velocity</topic><topic>Gases</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Industrial wastes</topic><topic>Iron and steel industry</topic><topic>Mathematical models</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pressure swing adsorption</topic><topic>Separation</topic><topic>Shift reaction</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Water gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kakiuchi, Toji</creatorcontrib><creatorcontrib>Yajima, Tomoyuki</creatorcontrib><creatorcontrib>Shigaki, Nobuyuki</creatorcontrib><creatorcontrib>Kawajiri, Yoshiaki</creatorcontrib><collection>CrossRef</collection><jtitle>Adsorption : journal of the International Adsorption Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kakiuchi, Toji</au><au>Yajima, Tomoyuki</au><au>Shigaki, Nobuyuki</au><au>Kawajiri, Yoshiaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas</atitle><jtitle>Adsorption : journal of the International Adsorption Society</jtitle><stitle>Adsorption</stitle><date>2023</date><risdate>2023</risdate><volume>29</volume><issue>1</issue><spage>9</spage><epage>27</epage><pages>9-27</pages><artnum>9</artnum><issn>0929-5607</issn><issn>1572-8757</issn><eissn>1572-8757</eissn><abstract>Adsorption processes are expected to play an important role in carbon dioxide capture, utilization and storage (CCUS). In particular, blast furnace gas (BFG) from the steel industry is one of the major sources of CO 2 emissions, and reducing emissions from this source is a major challenge. BFG can be treated as valuable hydrogen (H 2 ) source through water gas shift reactions, which may allow synthesis of methane and methanol if the purification of these two gases is possible. This study proposes and designs a new Vacuum Pressure Swing Adsorption (VPSA) process that consists of two tandem adsorption columns for simultaneous separation of H 2 and CO 2 from BFG. A mathematical model is developed to predict the performance of the proposed process. The model is fitted to the experimental data using a VPSA pilot plant, which were demonstrated to predict flow rates within an error of 6%. Furthermore, the model was used to perform multi-objective optimization to analyze trade-offs among throughput, energy consumption, CO 2 purity, and recovery. Finally, we analyzed the optimal design and operating conditions such as pressure and column height.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10450-022-00371-x</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7124-1704</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0929-5607
ispartof Adsorption : journal of the International Adsorption Society, 2023, Vol.29 (1), p.9-27, Article 9
issn 0929-5607
1572-8757
1572-8757
language eng
recordid cdi_proquest_journals_2776071234
source SpringerLink Journals - AutoHoldings
subjects Adsorption
Blast furnace gas
Carbon dioxide
Carbon sequestration
Chemical synthesis
Chemistry
Chemistry and Materials Science
Design optimization
Energy consumption
Engineering Thermodynamics
Exhaust gases
Flow velocity
Gases
Heat and Mass Transfer
Industrial Chemistry/Chemical Engineering
Industrial wastes
Iron and steel industry
Mathematical models
Multiple objective analysis
Optimization
Pressure swing adsorption
Separation
Shift reaction
Surfaces and Interfaces
Thin Films
Water gas
title Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20optimal%20design%20of%20multicomponent%20vacuum%20pressure%20swing%20adsorber%20for%20simultaneous%20separation%20of%20carbon%20dioxide%20and%20hydrogen%20from%20industrial%20waste%20gas&rft.jtitle=Adsorption%20:%20journal%20of%20the%20International%20Adsorption%20Society&rft.au=Kakiuchi,%20Toji&rft.date=2023&rft.volume=29&rft.issue=1&rft.spage=9&rft.epage=27&rft.pages=9-27&rft.artnum=9&rft.issn=0929-5607&rft.eissn=1572-8757&rft_id=info:doi/10.1007/s10450-022-00371-x&rft_dat=%3Cproquest_cross%3E2776071234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776071234&rft_id=info:pmid/&rfr_iscdi=true