Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas
Adsorption processes are expected to play an important role in carbon dioxide capture, utilization and storage (CCUS). In particular, blast furnace gas (BFG) from the steel industry is one of the major sources of CO 2 emissions, and reducing emissions from this source is a major challenge. BFG can b...
Gespeichert in:
Veröffentlicht in: | Adsorption : journal of the International Adsorption Society 2023, Vol.29 (1), p.9-27, Article 9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 1 |
container_start_page | 9 |
container_title | Adsorption : journal of the International Adsorption Society |
container_volume | 29 |
creator | Kakiuchi, Toji Yajima, Tomoyuki Shigaki, Nobuyuki Kawajiri, Yoshiaki |
description | Adsorption processes are expected to play an important role in carbon dioxide capture, utilization and storage (CCUS). In particular, blast furnace gas (BFG) from the steel industry is one of the major sources of CO
2
emissions, and reducing emissions from this source is a major challenge. BFG can be treated as valuable hydrogen (H
2
) source through water gas shift reactions, which may allow synthesis of methane and methanol if the purification of these two gases is possible. This study proposes and designs a new Vacuum Pressure Swing Adsorption (VPSA) process that consists of two tandem adsorption columns for simultaneous separation of H
2
and CO
2
from BFG. A mathematical model is developed to predict the performance of the proposed process. The model is fitted to the experimental data using a VPSA pilot plant, which were demonstrated to predict flow rates within an error of 6%. Furthermore, the model was used to perform multi-objective optimization to analyze trade-offs among throughput, energy consumption, CO
2
purity, and recovery. Finally, we analyzed the optimal design and operating conditions such as pressure and column height. |
doi_str_mv | 10.1007/s10450-022-00371-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2776071234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776071234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b54a51f63c87b0d1ebbc9e6c13ff00abd453cf396daf065ee2f5ccee84da8f5b3</originalsourceid><addsrcrecordid>eNp9kcFu1TAQRS1EJR6lP8DKEuuAHcdxskQVUKRW3cA6cuxx6iqxg8ehr5_Dn9bNQ0Ji0dXMYs69o3sJec_ZR86Y-oScNZJVrK4rxoTi1fEVOXCp6qpTUr0mB9bXfSVbpt6Qt4j3jLG-VeJA_txEC7MPE9XB0rhmv-iZWkA_BRodXbY5exOXNQYImf7WZtsWuiZA3BJQfNhRizGNkKiLiaJ_ZnSAuCFFWHXS2cddzOg0ls36ePQWdse7R5viBIG6FBfqg90wJ19eeNCYgU4a35Ezp2eEi7_znPz8-uXH5VV1ffvt--Xn68qIVuRqlI2W3LXCdGpklsM4mh5aw4VzjOnRNlIYJ_rWasdaCVA7aQxA11jdOTmKc_LhpLum-GsDzMN93FIolkOtVEmO16IpV_XpyqSImMANayqRpceBs-G5iuFUxVCqGPYqhmOBuv8g4_OeSk7azy-j4oRi8QkTpH9fvUA9Ab31pT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776071234</pqid></control><display><type>article</type><title>Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kakiuchi, Toji ; Yajima, Tomoyuki ; Shigaki, Nobuyuki ; Kawajiri, Yoshiaki</creator><creatorcontrib>Kakiuchi, Toji ; Yajima, Tomoyuki ; Shigaki, Nobuyuki ; Kawajiri, Yoshiaki</creatorcontrib><description>Adsorption processes are expected to play an important role in carbon dioxide capture, utilization and storage (CCUS). In particular, blast furnace gas (BFG) from the steel industry is one of the major sources of CO
2
emissions, and reducing emissions from this source is a major challenge. BFG can be treated as valuable hydrogen (H
2
) source through water gas shift reactions, which may allow synthesis of methane and methanol if the purification of these two gases is possible. This study proposes and designs a new Vacuum Pressure Swing Adsorption (VPSA) process that consists of two tandem adsorption columns for simultaneous separation of H
2
and CO
2
from BFG. A mathematical model is developed to predict the performance of the proposed process. The model is fitted to the experimental data using a VPSA pilot plant, which were demonstrated to predict flow rates within an error of 6%. Furthermore, the model was used to perform multi-objective optimization to analyze trade-offs among throughput, energy consumption, CO
2
purity, and recovery. Finally, we analyzed the optimal design and operating conditions such as pressure and column height.</description><identifier>ISSN: 0929-5607</identifier><identifier>ISSN: 1572-8757</identifier><identifier>EISSN: 1572-8757</identifier><identifier>DOI: 10.1007/s10450-022-00371-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adsorption ; Blast furnace gas ; Carbon dioxide ; Carbon sequestration ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Design optimization ; Energy consumption ; Engineering Thermodynamics ; Exhaust gases ; Flow velocity ; Gases ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Industrial wastes ; Iron and steel industry ; Mathematical models ; Multiple objective analysis ; Optimization ; Pressure swing adsorption ; Separation ; Shift reaction ; Surfaces and Interfaces ; Thin Films ; Water gas</subject><ispartof>Adsorption : journal of the International Adsorption Society, 2023, Vol.29 (1), p.9-27, Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b54a51f63c87b0d1ebbc9e6c13ff00abd453cf396daf065ee2f5ccee84da8f5b3</citedby><cites>FETCH-LOGICAL-c363t-b54a51f63c87b0d1ebbc9e6c13ff00abd453cf396daf065ee2f5ccee84da8f5b3</cites><orcidid>0000-0002-7124-1704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10450-022-00371-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10450-022-00371-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kakiuchi, Toji</creatorcontrib><creatorcontrib>Yajima, Tomoyuki</creatorcontrib><creatorcontrib>Shigaki, Nobuyuki</creatorcontrib><creatorcontrib>Kawajiri, Yoshiaki</creatorcontrib><title>Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas</title><title>Adsorption : journal of the International Adsorption Society</title><addtitle>Adsorption</addtitle><description>Adsorption processes are expected to play an important role in carbon dioxide capture, utilization and storage (CCUS). In particular, blast furnace gas (BFG) from the steel industry is one of the major sources of CO
2
emissions, and reducing emissions from this source is a major challenge. BFG can be treated as valuable hydrogen (H
2
) source through water gas shift reactions, which may allow synthesis of methane and methanol if the purification of these two gases is possible. This study proposes and designs a new Vacuum Pressure Swing Adsorption (VPSA) process that consists of two tandem adsorption columns for simultaneous separation of H
2
and CO
2
from BFG. A mathematical model is developed to predict the performance of the proposed process. The model is fitted to the experimental data using a VPSA pilot plant, which were demonstrated to predict flow rates within an error of 6%. Furthermore, the model was used to perform multi-objective optimization to analyze trade-offs among throughput, energy consumption, CO
2
purity, and recovery. Finally, we analyzed the optimal design and operating conditions such as pressure and column height.</description><subject>Adsorption</subject><subject>Blast furnace gas</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Design optimization</subject><subject>Energy consumption</subject><subject>Engineering Thermodynamics</subject><subject>Exhaust gases</subject><subject>Flow velocity</subject><subject>Gases</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Industrial wastes</subject><subject>Iron and steel industry</subject><subject>Mathematical models</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pressure swing adsorption</subject><subject>Separation</subject><subject>Shift reaction</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Water gas</subject><issn>0929-5607</issn><issn>1572-8757</issn><issn>1572-8757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1TAQRS1EJR6lP8DKEuuAHcdxskQVUKRW3cA6cuxx6iqxg8ehr5_Dn9bNQ0Ji0dXMYs69o3sJec_ZR86Y-oScNZJVrK4rxoTi1fEVOXCp6qpTUr0mB9bXfSVbpt6Qt4j3jLG-VeJA_txEC7MPE9XB0rhmv-iZWkA_BRodXbY5exOXNQYImf7WZtsWuiZA3BJQfNhRizGNkKiLiaJ_ZnSAuCFFWHXS2cddzOg0ls36ePQWdse7R5viBIG6FBfqg90wJ19eeNCYgU4a35Ezp2eEi7_znPz8-uXH5VV1ffvt--Xn68qIVuRqlI2W3LXCdGpklsM4mh5aw4VzjOnRNlIYJ_rWasdaCVA7aQxA11jdOTmKc_LhpLum-GsDzMN93FIolkOtVEmO16IpV_XpyqSImMANayqRpceBs-G5iuFUxVCqGPYqhmOBuv8g4_OeSk7azy-j4oRi8QkTpH9fvUA9Ab31pT0</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kakiuchi, Toji</creator><creator>Yajima, Tomoyuki</creator><creator>Shigaki, Nobuyuki</creator><creator>Kawajiri, Yoshiaki</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7124-1704</orcidid></search><sort><creationdate>2023</creationdate><title>Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas</title><author>Kakiuchi, Toji ; Yajima, Tomoyuki ; Shigaki, Nobuyuki ; Kawajiri, Yoshiaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b54a51f63c87b0d1ebbc9e6c13ff00abd453cf396daf065ee2f5ccee84da8f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Blast furnace gas</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Design optimization</topic><topic>Energy consumption</topic><topic>Engineering Thermodynamics</topic><topic>Exhaust gases</topic><topic>Flow velocity</topic><topic>Gases</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Industrial wastes</topic><topic>Iron and steel industry</topic><topic>Mathematical models</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pressure swing adsorption</topic><topic>Separation</topic><topic>Shift reaction</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Water gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kakiuchi, Toji</creatorcontrib><creatorcontrib>Yajima, Tomoyuki</creatorcontrib><creatorcontrib>Shigaki, Nobuyuki</creatorcontrib><creatorcontrib>Kawajiri, Yoshiaki</creatorcontrib><collection>CrossRef</collection><jtitle>Adsorption : journal of the International Adsorption Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kakiuchi, Toji</au><au>Yajima, Tomoyuki</au><au>Shigaki, Nobuyuki</au><au>Kawajiri, Yoshiaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas</atitle><jtitle>Adsorption : journal of the International Adsorption Society</jtitle><stitle>Adsorption</stitle><date>2023</date><risdate>2023</risdate><volume>29</volume><issue>1</issue><spage>9</spage><epage>27</epage><pages>9-27</pages><artnum>9</artnum><issn>0929-5607</issn><issn>1572-8757</issn><eissn>1572-8757</eissn><abstract>Adsorption processes are expected to play an important role in carbon dioxide capture, utilization and storage (CCUS). In particular, blast furnace gas (BFG) from the steel industry is one of the major sources of CO
2
emissions, and reducing emissions from this source is a major challenge. BFG can be treated as valuable hydrogen (H
2
) source through water gas shift reactions, which may allow synthesis of methane and methanol if the purification of these two gases is possible. This study proposes and designs a new Vacuum Pressure Swing Adsorption (VPSA) process that consists of two tandem adsorption columns for simultaneous separation of H
2
and CO
2
from BFG. A mathematical model is developed to predict the performance of the proposed process. The model is fitted to the experimental data using a VPSA pilot plant, which were demonstrated to predict flow rates within an error of 6%. Furthermore, the model was used to perform multi-objective optimization to analyze trade-offs among throughput, energy consumption, CO
2
purity, and recovery. Finally, we analyzed the optimal design and operating conditions such as pressure and column height.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10450-022-00371-x</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7124-1704</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5607 |
ispartof | Adsorption : journal of the International Adsorption Society, 2023, Vol.29 (1), p.9-27, Article 9 |
issn | 0929-5607 1572-8757 1572-8757 |
language | eng |
recordid | cdi_proquest_journals_2776071234 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adsorption Blast furnace gas Carbon dioxide Carbon sequestration Chemical synthesis Chemistry Chemistry and Materials Science Design optimization Energy consumption Engineering Thermodynamics Exhaust gases Flow velocity Gases Heat and Mass Transfer Industrial Chemistry/Chemical Engineering Industrial wastes Iron and steel industry Mathematical models Multiple objective analysis Optimization Pressure swing adsorption Separation Shift reaction Surfaces and Interfaces Thin Films Water gas |
title | Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20optimal%20design%20of%20multicomponent%20vacuum%20pressure%20swing%20adsorber%20for%20simultaneous%20separation%20of%20carbon%20dioxide%20and%20hydrogen%20from%20industrial%20waste%20gas&rft.jtitle=Adsorption%20:%20journal%20of%20the%20International%20Adsorption%20Society&rft.au=Kakiuchi,%20Toji&rft.date=2023&rft.volume=29&rft.issue=1&rft.spage=9&rft.epage=27&rft.pages=9-27&rft.artnum=9&rft.issn=0929-5607&rft.eissn=1572-8757&rft_id=info:doi/10.1007/s10450-022-00371-x&rft_dat=%3Cproquest_cross%3E2776071234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776071234&rft_id=info:pmid/&rfr_iscdi=true |