Microstructural and mechanical properties of AlSi10Mg: Hybrid welding of additively manufactured and cast parts

Welding and joining of hybrid components consisting of additively manufactured (AM) parts and conventionally processed parts offer new opportunities in structural design. In the present study, AlSi10Mg specimens were fabricated using two different manufacturing processes, i.e., laser-based powder-be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2023-01, Vol.38 (2), p.297-311
Hauptverfasser: Krochmal, M., Rajan, A. Nammalvar Raja, Moeini, G., Sajadifar, S. V., Wegener, T., Niendorf, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 2
container_start_page 297
container_title Journal of materials research
container_volume 38
creator Krochmal, M.
Rajan, A. Nammalvar Raja
Moeini, G.
Sajadifar, S. V.
Wegener, T.
Niendorf, T.
description Welding and joining of hybrid components consisting of additively manufactured (AM) parts and conventionally processed parts offer new opportunities in structural design. In the present study, AlSi10Mg specimens were fabricated using two different manufacturing processes, i.e., laser-based powder-bed fusion of metals (PBF-LB/M) and casting, and welded by means of friction stir welding (FSW). Material strength of dissimilar welded joints was found to be governed by the as-cast material, which is characterized by a very coarse microstructure resulting in inferior hardness and tensile properties. During fatigue testing, cast-cast specimens performed slightly better than their hybrid AM-cast counterparts with respect to lifetime, being rationalized by most pronounced strain inhomogeneities in the AM-cast specimens. With the aim of cost reduction, FSW can be employed to fabricate graded large parts as long as the AM as-built material is placed in the region demanding superior cyclic load-bearing capacity. Graphical abstract
doi_str_mv 10.1557/s43578-022-00838-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2776071216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776071216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ef36208085b637b1c977b7e4c8d40d715887ab308015ded3f63249f9dd7f07473</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicTb4L7HDraqAIrXiAJwtJ7aLqzQJtgPq2-M0SNw4rVY7M6v5ALjG6BbnOb8LjOZcQEQIREhQAfEJmBHEGMwpKU7BDAnBICkxOwcXIewQwjnibAa6jat9F6If6jh41WSq1dne1B-qdXVae9_1xkdnQtbZbNG8Oow22_tsdai809m3abRrt-NNae2i-zLNIdurdrBqDDT6GFirELNe-RguwZlVTTBXv3MO3h8f3pYruH55el4u1rAmJY3QWFoQJJDIq4LyCtcl5xU3rBaaIc1xLgRXFU0KnGujqS0oYaUtteY29eJ0Dm6m3FTgczAhyl03-Da9lITzAnFMcJFUZFKNDII3Vvbe7ZU_SIzkCFZOYGUCK49gJU4mOplCErdb4_-i_3H9AMZOe-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776071216</pqid></control><display><type>article</type><title>Microstructural and mechanical properties of AlSi10Mg: Hybrid welding of additively manufactured and cast parts</title><source>SpringerLink Journals - AutoHoldings</source><creator>Krochmal, M. ; Rajan, A. Nammalvar Raja ; Moeini, G. ; Sajadifar, S. V. ; Wegener, T. ; Niendorf, T.</creator><creatorcontrib>Krochmal, M. ; Rajan, A. Nammalvar Raja ; Moeini, G. ; Sajadifar, S. V. ; Wegener, T. ; Niendorf, T.</creatorcontrib><description>Welding and joining of hybrid components consisting of additively manufactured (AM) parts and conventionally processed parts offer new opportunities in structural design. In the present study, AlSi10Mg specimens were fabricated using two different manufacturing processes, i.e., laser-based powder-bed fusion of metals (PBF-LB/M) and casting, and welded by means of friction stir welding (FSW). Material strength of dissimilar welded joints was found to be governed by the as-cast material, which is characterized by a very coarse microstructure resulting in inferior hardness and tensile properties. During fatigue testing, cast-cast specimens performed slightly better than their hybrid AM-cast counterparts with respect to lifetime, being rationalized by most pronounced strain inhomogeneities in the AM-cast specimens. With the aim of cost reduction, FSW can be employed to fabricate graded large parts as long as the AM as-built material is placed in the region demanding superior cyclic load-bearing capacity. Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00838-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aluminum base alloys ; Applied and Technical Physics ; Bearing capacity ; Biomaterials ; Chemistry and Materials Science ; Cyclic loads ; Dissimilar material joining ; Dissimilar materials ; Fatigue tests ; Friction stir welding ; Inorganic Chemistry ; Invited Feature Paper ; Laser applications ; Laser beam welding ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Microstructure ; Nanotechnology ; Structural design ; Tensile properties ; Welded joints</subject><ispartof>Journal of materials research, 2023-01, Vol.38 (2), p.297-311</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ef36208085b637b1c977b7e4c8d40d715887ab308015ded3f63249f9dd7f07473</citedby><cites>FETCH-LOGICAL-c293t-ef36208085b637b1c977b7e4c8d40d715887ab308015ded3f63249f9dd7f07473</cites><orcidid>0000-0001-5241-2267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-022-00838-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-022-00838-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Krochmal, M.</creatorcontrib><creatorcontrib>Rajan, A. Nammalvar Raja</creatorcontrib><creatorcontrib>Moeini, G.</creatorcontrib><creatorcontrib>Sajadifar, S. V.</creatorcontrib><creatorcontrib>Wegener, T.</creatorcontrib><creatorcontrib>Niendorf, T.</creatorcontrib><title>Microstructural and mechanical properties of AlSi10Mg: Hybrid welding of additively manufactured and cast parts</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Welding and joining of hybrid components consisting of additively manufactured (AM) parts and conventionally processed parts offer new opportunities in structural design. In the present study, AlSi10Mg specimens were fabricated using two different manufacturing processes, i.e., laser-based powder-bed fusion of metals (PBF-LB/M) and casting, and welded by means of friction stir welding (FSW). Material strength of dissimilar welded joints was found to be governed by the as-cast material, which is characterized by a very coarse microstructure resulting in inferior hardness and tensile properties. During fatigue testing, cast-cast specimens performed slightly better than their hybrid AM-cast counterparts with respect to lifetime, being rationalized by most pronounced strain inhomogeneities in the AM-cast specimens. With the aim of cost reduction, FSW can be employed to fabricate graded large parts as long as the AM as-built material is placed in the region demanding superior cyclic load-bearing capacity. Graphical abstract</description><subject>Aluminum base alloys</subject><subject>Applied and Technical Physics</subject><subject>Bearing capacity</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Cyclic loads</subject><subject>Dissimilar material joining</subject><subject>Dissimilar materials</subject><subject>Fatigue tests</subject><subject>Friction stir welding</subject><subject>Inorganic Chemistry</subject><subject>Invited Feature Paper</subject><subject>Laser applications</subject><subject>Laser beam welding</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Structural design</subject><subject>Tensile properties</subject><subject>Welded joints</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApwicTb4L7HDraqAIrXiAJwtJ7aLqzQJtgPq2-M0SNw4rVY7M6v5ALjG6BbnOb8LjOZcQEQIREhQAfEJmBHEGMwpKU7BDAnBICkxOwcXIewQwjnibAa6jat9F6If6jh41WSq1dne1B-qdXVae9_1xkdnQtbZbNG8Oow22_tsdai809m3abRrt-NNae2i-zLNIdurdrBqDDT6GFirELNe-RguwZlVTTBXv3MO3h8f3pYruH55el4u1rAmJY3QWFoQJJDIq4LyCtcl5xU3rBaaIc1xLgRXFU0KnGujqS0oYaUtteY29eJ0Dm6m3FTgczAhyl03-Da9lITzAnFMcJFUZFKNDII3Vvbe7ZU_SIzkCFZOYGUCK49gJU4mOplCErdb4_-i_3H9AMZOe-8</recordid><startdate>20230128</startdate><enddate>20230128</enddate><creator>Krochmal, M.</creator><creator>Rajan, A. Nammalvar Raja</creator><creator>Moeini, G.</creator><creator>Sajadifar, S. V.</creator><creator>Wegener, T.</creator><creator>Niendorf, T.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5241-2267</orcidid></search><sort><creationdate>20230128</creationdate><title>Microstructural and mechanical properties of AlSi10Mg: Hybrid welding of additively manufactured and cast parts</title><author>Krochmal, M. ; Rajan, A. Nammalvar Raja ; Moeini, G. ; Sajadifar, S. V. ; Wegener, T. ; Niendorf, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ef36208085b637b1c977b7e4c8d40d715887ab308015ded3f63249f9dd7f07473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum base alloys</topic><topic>Applied and Technical Physics</topic><topic>Bearing capacity</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Cyclic loads</topic><topic>Dissimilar material joining</topic><topic>Dissimilar materials</topic><topic>Fatigue tests</topic><topic>Friction stir welding</topic><topic>Inorganic Chemistry</topic><topic>Invited Feature Paper</topic><topic>Laser applications</topic><topic>Laser beam welding</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Structural design</topic><topic>Tensile properties</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krochmal, M.</creatorcontrib><creatorcontrib>Rajan, A. Nammalvar Raja</creatorcontrib><creatorcontrib>Moeini, G.</creatorcontrib><creatorcontrib>Sajadifar, S. V.</creatorcontrib><creatorcontrib>Wegener, T.</creatorcontrib><creatorcontrib>Niendorf, T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krochmal, M.</au><au>Rajan, A. Nammalvar Raja</au><au>Moeini, G.</au><au>Sajadifar, S. V.</au><au>Wegener, T.</au><au>Niendorf, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural and mechanical properties of AlSi10Mg: Hybrid welding of additively manufactured and cast parts</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2023-01-28</date><risdate>2023</risdate><volume>38</volume><issue>2</issue><spage>297</spage><epage>311</epage><pages>297-311</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Welding and joining of hybrid components consisting of additively manufactured (AM) parts and conventionally processed parts offer new opportunities in structural design. In the present study, AlSi10Mg specimens were fabricated using two different manufacturing processes, i.e., laser-based powder-bed fusion of metals (PBF-LB/M) and casting, and welded by means of friction stir welding (FSW). Material strength of dissimilar welded joints was found to be governed by the as-cast material, which is characterized by a very coarse microstructure resulting in inferior hardness and tensile properties. During fatigue testing, cast-cast specimens performed slightly better than their hybrid AM-cast counterparts with respect to lifetime, being rationalized by most pronounced strain inhomogeneities in the AM-cast specimens. With the aim of cost reduction, FSW can be employed to fabricate graded large parts as long as the AM as-built material is placed in the region demanding superior cyclic load-bearing capacity. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00838-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5241-2267</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2023-01, Vol.38 (2), p.297-311
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2776071216
source SpringerLink Journals - AutoHoldings
subjects Aluminum base alloys
Applied and Technical Physics
Bearing capacity
Biomaterials
Chemistry and Materials Science
Cyclic loads
Dissimilar material joining
Dissimilar materials
Fatigue tests
Friction stir welding
Inorganic Chemistry
Invited Feature Paper
Laser applications
Laser beam welding
Materials Engineering
Materials research
Materials Science
Mechanical properties
Microstructure
Nanotechnology
Structural design
Tensile properties
Welded joints
title Microstructural and mechanical properties of AlSi10Mg: Hybrid welding of additively manufactured and cast parts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20and%20mechanical%20properties%20of%20AlSi10Mg:%20Hybrid%20welding%20of%20additively%20manufactured%20and%20cast%20parts&rft.jtitle=Journal%20of%20materials%20research&rft.au=Krochmal,%20M.&rft.date=2023-01-28&rft.volume=38&rft.issue=2&rft.spage=297&rft.epage=311&rft.pages=297-311&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00838-1&rft_dat=%3Cproquest_cross%3E2776071216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776071216&rft_id=info:pmid/&rfr_iscdi=true