High-temperature stable plasmonic gold gallia nanocomposites for gas sensing
Real-time monitoring of gases in harsh environments has become a necessity for a wide range of industries including aviation, aerospace and nuclear plants to control process parameters and optimize operating costs. High-temperature stable materials are necessary for these sensing platforms, often op...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2023-01, Vol.38 (2), p.497-506 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 506 |
---|---|
container_issue | 2 |
container_start_page | 497 |
container_title | Journal of materials research |
container_volume | 38 |
creator | Keerthana, L. Indhu, A. R. Dharmalingam, Gnanaprakash |
description | Real-time monitoring of gases in harsh environments has become a necessity for a wide range of industries including aviation, aerospace and nuclear plants to control process parameters and optimize operating costs. High-temperature stable materials are necessary for these sensing platforms, often operating at temperatures greater than 500 °C. In this work, we report for the first time Au/gallium oxide nanostructures synthesized using a facile approach which after characterization by optical (UV–Visible) and structural (X-ray diffraction, transmission electron microscope) analyses exhibited sensitivity to CO at a temperature of 800 °C. We have also studied the thermal, chemical and morphological stability of the samples, and the results indicate that they can be promising for high-temperature gas sensing. Such nanocomposites prepared using simple solution-based approaches can be a promising cost-effective approach for high-temperature and extreme environment gas sensing.
Graphical abstract |
doi_str_mv | 10.1557/s43578-022-00834-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2776067538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776067538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-36b763bdf2c3db1a8209462f86f7c120bbd9beb12eb6068db6ab7600a227329a3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeC5-hkkibpURZ1hQUveg5Jm9Yu3aYm3YNvb7SCN08zMN__D3yEXDO4ZWWp7pLgpdIUECmA5oKWJ2SFIPLCUZ6SFWgtKFZMnJOLlPYArAQlVmS37bt3OvvD5KOdj9EXabZu8MU02HQIY18XXRiaorPD0NtitGOow2EKqZ99KtoQ8yUVyY-pH7tLctbaIfmr37kmb48Pr5st3b08PW_ud7RGUc2US6ckd02LNW8csxqhEhJbLVtVMwTnmsp5x9A7CVI3TtocALCIimNl-ZrcLL1TDB9Hn2azD8c45pcGVSalKrnOFC5UHUNK0bdmiv3Bxk_DwHxbM4s1k62ZH2umzCG-hFKGx87Hv-p_Ul_SlnBR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776067538</pqid></control><display><type>article</type><title>High-temperature stable plasmonic gold gallia nanocomposites for gas sensing</title><source>SpringerNature Journals</source><creator>Keerthana, L. ; Indhu, A. R. ; Dharmalingam, Gnanaprakash</creator><creatorcontrib>Keerthana, L. ; Indhu, A. R. ; Dharmalingam, Gnanaprakash</creatorcontrib><description>Real-time monitoring of gases in harsh environments has become a necessity for a wide range of industries including aviation, aerospace and nuclear plants to control process parameters and optimize operating costs. High-temperature stable materials are necessary for these sensing platforms, often operating at temperatures greater than 500 °C. In this work, we report for the first time Au/gallium oxide nanostructures synthesized using a facile approach which after characterization by optical (UV–Visible) and structural (X-ray diffraction, transmission electron microscope) analyses exhibited sensitivity to CO at a temperature of 800 °C. We have also studied the thermal, chemical and morphological stability of the samples, and the results indicate that they can be promising for high-temperature gas sensing. Such nanocomposites prepared using simple solution-based approaches can be a promising cost-effective approach for high-temperature and extreme environment gas sensing.
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00834-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Extreme environments ; Gallium oxides ; Gas sensors ; High temperature gases ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanocomposites ; Nanotechnology ; Process parameters</subject><ispartof>Journal of materials research, 2023-01, Vol.38 (2), p.497-506</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-36b763bdf2c3db1a8209462f86f7c120bbd9beb12eb6068db6ab7600a227329a3</citedby><cites>FETCH-LOGICAL-c249t-36b763bdf2c3db1a8209462f86f7c120bbd9beb12eb6068db6ab7600a227329a3</cites><orcidid>0000-0002-3081-6233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-022-00834-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-022-00834-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Keerthana, L.</creatorcontrib><creatorcontrib>Indhu, A. R.</creatorcontrib><creatorcontrib>Dharmalingam, Gnanaprakash</creatorcontrib><title>High-temperature stable plasmonic gold gallia nanocomposites for gas sensing</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Real-time monitoring of gases in harsh environments has become a necessity for a wide range of industries including aviation, aerospace and nuclear plants to control process parameters and optimize operating costs. High-temperature stable materials are necessary for these sensing platforms, often operating at temperatures greater than 500 °C. In this work, we report for the first time Au/gallium oxide nanostructures synthesized using a facile approach which after characterization by optical (UV–Visible) and structural (X-ray diffraction, transmission electron microscope) analyses exhibited sensitivity to CO at a temperature of 800 °C. We have also studied the thermal, chemical and morphological stability of the samples, and the results indicate that they can be promising for high-temperature gas sensing. Such nanocomposites prepared using simple solution-based approaches can be a promising cost-effective approach for high-temperature and extreme environment gas sensing.
Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Extreme environments</subject><subject>Gallium oxides</subject><subject>Gas sensors</subject><subject>High temperature gases</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Process parameters</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeC5-hkkibpURZ1hQUveg5Jm9Yu3aYm3YNvb7SCN08zMN__D3yEXDO4ZWWp7pLgpdIUECmA5oKWJ2SFIPLCUZ6SFWgtKFZMnJOLlPYArAQlVmS37bt3OvvD5KOdj9EXabZu8MU02HQIY18XXRiaorPD0NtitGOow2EKqZ99KtoQ8yUVyY-pH7tLctbaIfmr37kmb48Pr5st3b08PW_ud7RGUc2US6ckd02LNW8csxqhEhJbLVtVMwTnmsp5x9A7CVI3TtocALCIimNl-ZrcLL1TDB9Hn2azD8c45pcGVSalKrnOFC5UHUNK0bdmiv3Bxk_DwHxbM4s1k62ZH2umzCG-hFKGx87Hv-p_Ul_SlnBR</recordid><startdate>20230128</startdate><enddate>20230128</enddate><creator>Keerthana, L.</creator><creator>Indhu, A. R.</creator><creator>Dharmalingam, Gnanaprakash</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3081-6233</orcidid></search><sort><creationdate>20230128</creationdate><title>High-temperature stable plasmonic gold gallia nanocomposites for gas sensing</title><author>Keerthana, L. ; Indhu, A. R. ; Dharmalingam, Gnanaprakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-36b763bdf2c3db1a8209462f86f7c120bbd9beb12eb6068db6ab7600a227329a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Extreme environments</topic><topic>Gallium oxides</topic><topic>Gas sensors</topic><topic>High temperature gases</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Process parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keerthana, L.</creatorcontrib><creatorcontrib>Indhu, A. R.</creatorcontrib><creatorcontrib>Dharmalingam, Gnanaprakash</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keerthana, L.</au><au>Indhu, A. R.</au><au>Dharmalingam, Gnanaprakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-temperature stable plasmonic gold gallia nanocomposites for gas sensing</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2023-01-28</date><risdate>2023</risdate><volume>38</volume><issue>2</issue><spage>497</spage><epage>506</epage><pages>497-506</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Real-time monitoring of gases in harsh environments has become a necessity for a wide range of industries including aviation, aerospace and nuclear plants to control process parameters and optimize operating costs. High-temperature stable materials are necessary for these sensing platforms, often operating at temperatures greater than 500 °C. In this work, we report for the first time Au/gallium oxide nanostructures synthesized using a facile approach which after characterization by optical (UV–Visible) and structural (X-ray diffraction, transmission electron microscope) analyses exhibited sensitivity to CO at a temperature of 800 °C. We have also studied the thermal, chemical and morphological stability of the samples, and the results indicate that they can be promising for high-temperature gas sensing. Such nanocomposites prepared using simple solution-based approaches can be a promising cost-effective approach for high-temperature and extreme environment gas sensing.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00834-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3081-6233</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2023-01, Vol.38 (2), p.497-506 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2776067538 |
source | SpringerNature Journals |
subjects | Applied and Technical Physics Biomaterials Chemistry and Materials Science Extreme environments Gallium oxides Gas sensors High temperature gases Inorganic Chemistry Materials Engineering Materials research Materials Science Nanocomposites Nanotechnology Process parameters |
title | High-temperature stable plasmonic gold gallia nanocomposites for gas sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-temperature%20stable%20plasmonic%20gold%20gallia%20nanocomposites%20for%20gas%20sensing&rft.jtitle=Journal%20of%20materials%20research&rft.au=Keerthana,%20L.&rft.date=2023-01-28&rft.volume=38&rft.issue=2&rft.spage=497&rft.epage=506&rft.pages=497-506&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00834-5&rft_dat=%3Cproquest_cross%3E2776067538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776067538&rft_id=info:pmid/&rfr_iscdi=true |