High-temperature stable plasmonic gold gallia nanocomposites for gas sensing

Real-time monitoring of gases in harsh environments has become a necessity for a wide range of industries including aviation, aerospace and nuclear plants to control process parameters and optimize operating costs. High-temperature stable materials are necessary for these sensing platforms, often op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2023-01, Vol.38 (2), p.497-506
Hauptverfasser: Keerthana, L., Indhu, A. R., Dharmalingam, Gnanaprakash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 506
container_issue 2
container_start_page 497
container_title Journal of materials research
container_volume 38
creator Keerthana, L.
Indhu, A. R.
Dharmalingam, Gnanaprakash
description Real-time monitoring of gases in harsh environments has become a necessity for a wide range of industries including aviation, aerospace and nuclear plants to control process parameters and optimize operating costs. High-temperature stable materials are necessary for these sensing platforms, often operating at temperatures greater than 500 °C. In this work, we report for the first time Au/gallium oxide nanostructures synthesized using a facile approach which after characterization by optical (UV–Visible) and structural (X-ray diffraction, transmission electron microscope) analyses exhibited sensitivity to CO at a temperature of 800 °C. We have also studied the thermal, chemical and morphological stability of the samples, and the results indicate that they can be promising for high-temperature gas sensing. Such nanocomposites prepared using simple solution-based approaches can be a promising cost-effective approach for high-temperature and extreme environment gas sensing. Graphical abstract
doi_str_mv 10.1557/s43578-022-00834-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2776067538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776067538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-36b763bdf2c3db1a8209462f86f7c120bbd9beb12eb6068db6ab7600a227329a3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeC5-hkkibpURZ1hQUveg5Jm9Yu3aYm3YNvb7SCN08zMN__D3yEXDO4ZWWp7pLgpdIUECmA5oKWJ2SFIPLCUZ6SFWgtKFZMnJOLlPYArAQlVmS37bt3OvvD5KOdj9EXabZu8MU02HQIY18XXRiaorPD0NtitGOow2EKqZ99KtoQ8yUVyY-pH7tLctbaIfmr37kmb48Pr5st3b08PW_ud7RGUc2US6ckd02LNW8csxqhEhJbLVtVMwTnmsp5x9A7CVI3TtocALCIimNl-ZrcLL1TDB9Hn2azD8c45pcGVSalKrnOFC5UHUNK0bdmiv3Bxk_DwHxbM4s1k62ZH2umzCG-hFKGx87Hv-p_Ul_SlnBR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776067538</pqid></control><display><type>article</type><title>High-temperature stable plasmonic gold gallia nanocomposites for gas sensing</title><source>SpringerNature Journals</source><creator>Keerthana, L. ; Indhu, A. R. ; Dharmalingam, Gnanaprakash</creator><creatorcontrib>Keerthana, L. ; Indhu, A. R. ; Dharmalingam, Gnanaprakash</creatorcontrib><description>Real-time monitoring of gases in harsh environments has become a necessity for a wide range of industries including aviation, aerospace and nuclear plants to control process parameters and optimize operating costs. High-temperature stable materials are necessary for these sensing platforms, often operating at temperatures greater than 500 °C. In this work, we report for the first time Au/gallium oxide nanostructures synthesized using a facile approach which after characterization by optical (UV–Visible) and structural (X-ray diffraction, transmission electron microscope) analyses exhibited sensitivity to CO at a temperature of 800 °C. We have also studied the thermal, chemical and morphological stability of the samples, and the results indicate that they can be promising for high-temperature gas sensing. Such nanocomposites prepared using simple solution-based approaches can be a promising cost-effective approach for high-temperature and extreme environment gas sensing. Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00834-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Extreme environments ; Gallium oxides ; Gas sensors ; High temperature gases ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanocomposites ; Nanotechnology ; Process parameters</subject><ispartof>Journal of materials research, 2023-01, Vol.38 (2), p.497-506</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-36b763bdf2c3db1a8209462f86f7c120bbd9beb12eb6068db6ab7600a227329a3</citedby><cites>FETCH-LOGICAL-c249t-36b763bdf2c3db1a8209462f86f7c120bbd9beb12eb6068db6ab7600a227329a3</cites><orcidid>0000-0002-3081-6233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-022-00834-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-022-00834-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Keerthana, L.</creatorcontrib><creatorcontrib>Indhu, A. R.</creatorcontrib><creatorcontrib>Dharmalingam, Gnanaprakash</creatorcontrib><title>High-temperature stable plasmonic gold gallia nanocomposites for gas sensing</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Real-time monitoring of gases in harsh environments has become a necessity for a wide range of industries including aviation, aerospace and nuclear plants to control process parameters and optimize operating costs. High-temperature stable materials are necessary for these sensing platforms, often operating at temperatures greater than 500 °C. In this work, we report for the first time Au/gallium oxide nanostructures synthesized using a facile approach which after characterization by optical (UV–Visible) and structural (X-ray diffraction, transmission electron microscope) analyses exhibited sensitivity to CO at a temperature of 800 °C. We have also studied the thermal, chemical and morphological stability of the samples, and the results indicate that they can be promising for high-temperature gas sensing. Such nanocomposites prepared using simple solution-based approaches can be a promising cost-effective approach for high-temperature and extreme environment gas sensing. Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Extreme environments</subject><subject>Gallium oxides</subject><subject>Gas sensors</subject><subject>High temperature gases</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Process parameters</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeC5-hkkibpURZ1hQUveg5Jm9Yu3aYm3YNvb7SCN08zMN__D3yEXDO4ZWWp7pLgpdIUECmA5oKWJ2SFIPLCUZ6SFWgtKFZMnJOLlPYArAQlVmS37bt3OvvD5KOdj9EXabZu8MU02HQIY18XXRiaorPD0NtitGOow2EKqZ99KtoQ8yUVyY-pH7tLctbaIfmr37kmb48Pr5st3b08PW_ud7RGUc2US6ckd02LNW8csxqhEhJbLVtVMwTnmsp5x9A7CVI3TtocALCIimNl-ZrcLL1TDB9Hn2azD8c45pcGVSalKrnOFC5UHUNK0bdmiv3Bxk_DwHxbM4s1k62ZH2umzCG-hFKGx87Hv-p_Ul_SlnBR</recordid><startdate>20230128</startdate><enddate>20230128</enddate><creator>Keerthana, L.</creator><creator>Indhu, A. R.</creator><creator>Dharmalingam, Gnanaprakash</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3081-6233</orcidid></search><sort><creationdate>20230128</creationdate><title>High-temperature stable plasmonic gold gallia nanocomposites for gas sensing</title><author>Keerthana, L. ; Indhu, A. R. ; Dharmalingam, Gnanaprakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-36b763bdf2c3db1a8209462f86f7c120bbd9beb12eb6068db6ab7600a227329a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Extreme environments</topic><topic>Gallium oxides</topic><topic>Gas sensors</topic><topic>High temperature gases</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Process parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keerthana, L.</creatorcontrib><creatorcontrib>Indhu, A. R.</creatorcontrib><creatorcontrib>Dharmalingam, Gnanaprakash</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keerthana, L.</au><au>Indhu, A. R.</au><au>Dharmalingam, Gnanaprakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-temperature stable plasmonic gold gallia nanocomposites for gas sensing</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2023-01-28</date><risdate>2023</risdate><volume>38</volume><issue>2</issue><spage>497</spage><epage>506</epage><pages>497-506</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Real-time monitoring of gases in harsh environments has become a necessity for a wide range of industries including aviation, aerospace and nuclear plants to control process parameters and optimize operating costs. High-temperature stable materials are necessary for these sensing platforms, often operating at temperatures greater than 500 °C. In this work, we report for the first time Au/gallium oxide nanostructures synthesized using a facile approach which after characterization by optical (UV–Visible) and structural (X-ray diffraction, transmission electron microscope) analyses exhibited sensitivity to CO at a temperature of 800 °C. We have also studied the thermal, chemical and morphological stability of the samples, and the results indicate that they can be promising for high-temperature gas sensing. Such nanocomposites prepared using simple solution-based approaches can be a promising cost-effective approach for high-temperature and extreme environment gas sensing. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00834-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3081-6233</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2023-01, Vol.38 (2), p.497-506
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2776067538
source SpringerNature Journals
subjects Applied and Technical Physics
Biomaterials
Chemistry and Materials Science
Extreme environments
Gallium oxides
Gas sensors
High temperature gases
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Nanocomposites
Nanotechnology
Process parameters
title High-temperature stable plasmonic gold gallia nanocomposites for gas sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-temperature%20stable%20plasmonic%20gold%20gallia%20nanocomposites%20for%20gas%20sensing&rft.jtitle=Journal%20of%20materials%20research&rft.au=Keerthana,%20L.&rft.date=2023-01-28&rft.volume=38&rft.issue=2&rft.spage=497&rft.epage=506&rft.pages=497-506&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00834-5&rft_dat=%3Cproquest_cross%3E2776067538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776067538&rft_id=info:pmid/&rfr_iscdi=true