Duality of generalized twisted Reed-Solomon codes and Hermitian self-dual MDS or NMDS codes

Self-dual MDS and NMDS codes over finite fields are linear codes with significant combinatorial and cryptographic applications. In this paper, firstly, we investigate the duality properties of generalized twisted Reed-Solomon (abbreviated GTRS) codes in some special cases. Then, a new systematic app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryptography and communications 2023-03, Vol.15 (2), p.383-395
Hauptverfasser: Guo, Guanmin, Li, Ruihu, Liu, Yang, Song, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 2
container_start_page 383
container_title Cryptography and communications
container_volume 15
creator Guo, Guanmin
Li, Ruihu
Liu, Yang
Song, Hao
description Self-dual MDS and NMDS codes over finite fields are linear codes with significant combinatorial and cryptographic applications. In this paper, firstly, we investigate the duality properties of generalized twisted Reed-Solomon (abbreviated GTRS) codes in some special cases. Then, a new systematic approach is proposed to obtain Hermitian self-dual (+)-GTRS codes, and furthermore, necessary and sufficient conditions for a (+)-GTRS code to be Hermitian self-dual are presented. Finally, several classes of Hermitian self-dual MDS and NMDS codes are constructed with this method.
doi_str_mv 10.1007/s12095-022-00605-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2776067421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776067421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-32d93dc6f1c6711ed9353377ddbc4d0c3a0f6336f7325c6a66e763751d0026613</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKt_wFPAczTJ2yTsUVq1QlWwevIQYpItW7abmmyR-uvNdkVvnuYNfDMPBqFzRi8ZpeoqMU5LQSjnhFJJBYEDNGIlSMILIQ5_70Ido5OUVhkSvIAReptuTVN3OxwqvPStj9l9eYe7zzp1WZ-9d2QRmrAOLbbB-YRN6_DMx3Xd1abFyTcVcbkEP0wXOET82OuePEVHlWmSP_vRMXq9vXmZzMj86e5-cj0nFljZEeCuBGdlxaxUjPnsBIBSzr3bwlELhlYSQFYKuLDSSOmVBCWYo5RLyWCMLobeTQwfW586vQrb2OaXmislqVQF7yk-UDaGlKKv9CbWaxN3mlHdj6iHEXUeUe9H1JBDMIRShtulj3_V_6S-ASA6ctY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776067421</pqid></control><display><type>article</type><title>Duality of generalized twisted Reed-Solomon codes and Hermitian self-dual MDS or NMDS codes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Guo, Guanmin ; Li, Ruihu ; Liu, Yang ; Song, Hao</creator><creatorcontrib>Guo, Guanmin ; Li, Ruihu ; Liu, Yang ; Song, Hao</creatorcontrib><description>Self-dual MDS and NMDS codes over finite fields are linear codes with significant combinatorial and cryptographic applications. In this paper, firstly, we investigate the duality properties of generalized twisted Reed-Solomon (abbreviated GTRS) codes in some special cases. Then, a new systematic approach is proposed to obtain Hermitian self-dual (+)-GTRS codes, and furthermore, necessary and sufficient conditions for a (+)-GTRS code to be Hermitian self-dual are presented. Finally, several classes of Hermitian self-dual MDS and NMDS codes are constructed with this method.</description><identifier>ISSN: 1936-2447</identifier><identifier>EISSN: 1936-2455</identifier><identifier>DOI: 10.1007/s12095-022-00605-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuits ; Coding and Information Theory ; Combinatorial analysis ; Communications Engineering ; Computer Science ; Cryptography ; Data Structures and Information Theory ; Fields (mathematics) ; Information and Communication ; Mathematics of Computing ; Networks ; Reed-Solomon codes</subject><ispartof>Cryptography and communications, 2023-03, Vol.15 (2), p.383-395</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-32d93dc6f1c6711ed9353377ddbc4d0c3a0f6336f7325c6a66e763751d0026613</citedby><cites>FETCH-LOGICAL-c319t-32d93dc6f1c6711ed9353377ddbc4d0c3a0f6336f7325c6a66e763751d0026613</cites><orcidid>0000-0002-3519-9289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12095-022-00605-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12095-022-00605-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Guo, Guanmin</creatorcontrib><creatorcontrib>Li, Ruihu</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Song, Hao</creatorcontrib><title>Duality of generalized twisted Reed-Solomon codes and Hermitian self-dual MDS or NMDS codes</title><title>Cryptography and communications</title><addtitle>Cryptogr. Commun</addtitle><description>Self-dual MDS and NMDS codes over finite fields are linear codes with significant combinatorial and cryptographic applications. In this paper, firstly, we investigate the duality properties of generalized twisted Reed-Solomon (abbreviated GTRS) codes in some special cases. Then, a new systematic approach is proposed to obtain Hermitian self-dual (+)-GTRS codes, and furthermore, necessary and sufficient conditions for a (+)-GTRS code to be Hermitian self-dual are presented. Finally, several classes of Hermitian self-dual MDS and NMDS codes are constructed with this method.</description><subject>Circuits</subject><subject>Coding and Information Theory</subject><subject>Combinatorial analysis</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Cryptography</subject><subject>Data Structures and Information Theory</subject><subject>Fields (mathematics)</subject><subject>Information and Communication</subject><subject>Mathematics of Computing</subject><subject>Networks</subject><subject>Reed-Solomon codes</subject><issn>1936-2447</issn><issn>1936-2455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKt_wFPAczTJ2yTsUVq1QlWwevIQYpItW7abmmyR-uvNdkVvnuYNfDMPBqFzRi8ZpeoqMU5LQSjnhFJJBYEDNGIlSMILIQ5_70Ido5OUVhkSvIAReptuTVN3OxwqvPStj9l9eYe7zzp1WZ-9d2QRmrAOLbbB-YRN6_DMx3Xd1abFyTcVcbkEP0wXOET82OuePEVHlWmSP_vRMXq9vXmZzMj86e5-cj0nFljZEeCuBGdlxaxUjPnsBIBSzr3bwlELhlYSQFYKuLDSSOmVBCWYo5RLyWCMLobeTQwfW586vQrb2OaXmislqVQF7yk-UDaGlKKv9CbWaxN3mlHdj6iHEXUeUe9H1JBDMIRShtulj3_V_6S-ASA6ctY</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Guo, Guanmin</creator><creator>Li, Ruihu</creator><creator>Liu, Yang</creator><creator>Song, Hao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3519-9289</orcidid></search><sort><creationdate>20230301</creationdate><title>Duality of generalized twisted Reed-Solomon codes and Hermitian self-dual MDS or NMDS codes</title><author>Guo, Guanmin ; Li, Ruihu ; Liu, Yang ; Song, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-32d93dc6f1c6711ed9353377ddbc4d0c3a0f6336f7325c6a66e763751d0026613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuits</topic><topic>Coding and Information Theory</topic><topic>Combinatorial analysis</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Cryptography</topic><topic>Data Structures and Information Theory</topic><topic>Fields (mathematics)</topic><topic>Information and Communication</topic><topic>Mathematics of Computing</topic><topic>Networks</topic><topic>Reed-Solomon codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Guanmin</creatorcontrib><creatorcontrib>Li, Ruihu</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Song, Hao</creatorcontrib><collection>CrossRef</collection><jtitle>Cryptography and communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Guanmin</au><au>Li, Ruihu</au><au>Liu, Yang</au><au>Song, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality of generalized twisted Reed-Solomon codes and Hermitian self-dual MDS or NMDS codes</atitle><jtitle>Cryptography and communications</jtitle><stitle>Cryptogr. Commun</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>15</volume><issue>2</issue><spage>383</spage><epage>395</epage><pages>383-395</pages><issn>1936-2447</issn><eissn>1936-2455</eissn><abstract>Self-dual MDS and NMDS codes over finite fields are linear codes with significant combinatorial and cryptographic applications. In this paper, firstly, we investigate the duality properties of generalized twisted Reed-Solomon (abbreviated GTRS) codes in some special cases. Then, a new systematic approach is proposed to obtain Hermitian self-dual (+)-GTRS codes, and furthermore, necessary and sufficient conditions for a (+)-GTRS code to be Hermitian self-dual are presented. Finally, several classes of Hermitian self-dual MDS and NMDS codes are constructed with this method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12095-022-00605-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3519-9289</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-2447
ispartof Cryptography and communications, 2023-03, Vol.15 (2), p.383-395
issn 1936-2447
1936-2455
language eng
recordid cdi_proquest_journals_2776067421
source SpringerLink Journals - AutoHoldings
subjects Circuits
Coding and Information Theory
Combinatorial analysis
Communications Engineering
Computer Science
Cryptography
Data Structures and Information Theory
Fields (mathematics)
Information and Communication
Mathematics of Computing
Networks
Reed-Solomon codes
title Duality of generalized twisted Reed-Solomon codes and Hermitian self-dual MDS or NMDS codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality%20of%20generalized%20twisted%20Reed-Solomon%20codes%20and%20Hermitian%20self-dual%20MDS%20or%20NMDS%20codes&rft.jtitle=Cryptography%20and%20communications&rft.au=Guo,%20Guanmin&rft.date=2023-03-01&rft.volume=15&rft.issue=2&rft.spage=383&rft.epage=395&rft.pages=383-395&rft.issn=1936-2447&rft.eissn=1936-2455&rft_id=info:doi/10.1007/s12095-022-00605-3&rft_dat=%3Cproquest_cross%3E2776067421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776067421&rft_id=info:pmid/&rfr_iscdi=true