GQDs-ε-PL and GQDs-ε-PL-based self-healing hydrogel: Synthesis, characterization and in vitro chemo-photothermal combined antibacterial
Surface amino-rich GQDs-ε-PL is prepared by changing the addition amount of ε-PL. Then, GQDs-ε-PL@4-arm PEG-BA/QCS hydrogels (GQDs-ε-PL@Gel) are synthesized through dynamic imine bonds cross-linking. The sol can transform quickly to gel and the gelation time can be controlled by adjusting the specif...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2023-01, Vol.38 (2), p.368-379 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 2 |
container_start_page | 368 |
container_title | Journal of materials research |
container_volume | 38 |
creator | Gao, Jia Zhang, Yuan Feng, Wenjing Zhang, Ying Cheng, Cui Han, Xiao |
description | Surface amino-rich GQDs-ε-PL is prepared by changing the addition amount of ε-PL. Then, GQDs-ε-PL@4-arm PEG-BA/QCS hydrogels (GQDs-ε-PL@Gel) are synthesized through dynamic imine bonds cross-linking. The sol can transform quickly to gel and the gelation time can be controlled by adjusting the specific gravity of the input raw materials to water. FT-IR and thermogravimetric analyses indicate the successful synthesis of GQDs-ε-PL and GQDs-ε-PL@Gel. The microstructure observation reveals that GQDs-ε-PL has a sheet-like structure with an average size of 65 nm, while GQDs-ε-PL@Gel has a porous network structure. Both GQDs-ε-PL and GQDs-ε-PL@Gel have good fluorescence stability, photothermal and cytocompatibility, and display better antibacterial effect against
Escherichia coli
,
Staphylococcus aureus
and
Pseudomonas aeruginosa
through chemical and photothermal synergistic sterilization. More importantly, GQDs-ε-PL@Gel can repeatedly self-heal after being damaged, which is more beneficial to provide an effective wound closure environment for wounds and to be used as wound dressings.
Graphical abstract |
doi_str_mv | 10.1557/s43578-022-00816-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2776067404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776067404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4b1baa366bc7b2b3c7e87c7f96994427066c19a16bd75eaab87a03341dcb86fe3</originalsourceid><addsrcrecordid>eNp9kM1qGzEURkVJoY7bF-hqoNuo0d9IM9mFJHUKhiYkXYsrjcYjM5YcaVxw3iAP1NfIM3XqCXiX1eVyv_NdOAh9peQ7LUt1ngUvVYUJY5iQikqsPqAZI0LgkjN5gmakqgRmNRWf0GnOa0JoSZSYoZfF_XXGr3_x3bKA0BTHFRvIrimy61vcOeh9WBXdvklx5fqL4mEfhs5ln88K20ECO7jkn2HwMRx6fCj--CHF8eo2EW-7OMQRSBvoCxs3xoexG8LgzYRC_xl9bKHP7svbnKPfP24er27x8tfi59XlEltO6wELQw0Al9JYZZjhVrlKWdXWsq6FYIpIaWkNVJpGlQ7AVAoI54I21lSydXyOvk292xSfdi4Peh13KYwvNVNKEqkEEWOKTSmbYs7JtXqb_AbSXlOi_yvXk3I9KtcH5VqNEJ-gPIbDyqVj9TvUP00khzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776067404</pqid></control><display><type>article</type><title>GQDs-ε-PL and GQDs-ε-PL-based self-healing hydrogel: Synthesis, characterization and in vitro chemo-photothermal combined antibacterial</title><source>SpringerNature Journals</source><creator>Gao, Jia ; Zhang, Yuan ; Feng, Wenjing ; Zhang, Ying ; Cheng, Cui ; Han, Xiao</creator><creatorcontrib>Gao, Jia ; Zhang, Yuan ; Feng, Wenjing ; Zhang, Ying ; Cheng, Cui ; Han, Xiao</creatorcontrib><description>Surface amino-rich GQDs-ε-PL is prepared by changing the addition amount of ε-PL. Then, GQDs-ε-PL@4-arm PEG-BA/QCS hydrogels (GQDs-ε-PL@Gel) are synthesized through dynamic imine bonds cross-linking. The sol can transform quickly to gel and the gelation time can be controlled by adjusting the specific gravity of the input raw materials to water. FT-IR and thermogravimetric analyses indicate the successful synthesis of GQDs-ε-PL and GQDs-ε-PL@Gel. The microstructure observation reveals that GQDs-ε-PL has a sheet-like structure with an average size of 65 nm, while GQDs-ε-PL@Gel has a porous network structure. Both GQDs-ε-PL and GQDs-ε-PL@Gel have good fluorescence stability, photothermal and cytocompatibility, and display better antibacterial effect against
Escherichia coli
,
Staphylococcus aureus
and
Pseudomonas aeruginosa
through chemical and photothermal synergistic sterilization. More importantly, GQDs-ε-PL@Gel can repeatedly self-heal after being damaged, which is more beneficial to provide an effective wound closure environment for wounds and to be used as wound dressings.
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00816-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Antibacterial materials ; Antiinfectives and antibacterials ; Applied and Technical Physics ; Biocompatibility ; Biomaterials ; Chemistry and Materials Science ; Crosslinking ; E coli ; Hydrogels ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Pseudomonas aeruginosa ; Raw materials ; Specific gravity ; Sterilization ; Synthesis ; Thermogravimetric analysis</subject><ispartof>Journal of materials research, 2023-01, Vol.38 (2), p.368-379</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4b1baa366bc7b2b3c7e87c7f96994427066c19a16bd75eaab87a03341dcb86fe3</citedby><cites>FETCH-LOGICAL-c319t-4b1baa366bc7b2b3c7e87c7f96994427066c19a16bd75eaab87a03341dcb86fe3</cites><orcidid>0000-0003-2872-2956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-022-00816-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-022-00816-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gao, Jia</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Feng, Wenjing</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Cheng, Cui</creatorcontrib><creatorcontrib>Han, Xiao</creatorcontrib><title>GQDs-ε-PL and GQDs-ε-PL-based self-healing hydrogel: Synthesis, characterization and in vitro chemo-photothermal combined antibacterial</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Surface amino-rich GQDs-ε-PL is prepared by changing the addition amount of ε-PL. Then, GQDs-ε-PL@4-arm PEG-BA/QCS hydrogels (GQDs-ε-PL@Gel) are synthesized through dynamic imine bonds cross-linking. The sol can transform quickly to gel and the gelation time can be controlled by adjusting the specific gravity of the input raw materials to water. FT-IR and thermogravimetric analyses indicate the successful synthesis of GQDs-ε-PL and GQDs-ε-PL@Gel. The microstructure observation reveals that GQDs-ε-PL has a sheet-like structure with an average size of 65 nm, while GQDs-ε-PL@Gel has a porous network structure. Both GQDs-ε-PL and GQDs-ε-PL@Gel have good fluorescence stability, photothermal and cytocompatibility, and display better antibacterial effect against
Escherichia coli
,
Staphylococcus aureus
and
Pseudomonas aeruginosa
through chemical and photothermal synergistic sterilization. More importantly, GQDs-ε-PL@Gel can repeatedly self-heal after being damaged, which is more beneficial to provide an effective wound closure environment for wounds and to be used as wound dressings.
Graphical abstract</description><subject>Antibacterial materials</subject><subject>Antiinfectives and antibacterials</subject><subject>Applied and Technical Physics</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Crosslinking</subject><subject>E coli</subject><subject>Hydrogels</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Pseudomonas aeruginosa</subject><subject>Raw materials</subject><subject>Specific gravity</subject><subject>Sterilization</subject><subject>Synthesis</subject><subject>Thermogravimetric analysis</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qGzEURkVJoY7bF-hqoNuo0d9IM9mFJHUKhiYkXYsrjcYjM5YcaVxw3iAP1NfIM3XqCXiX1eVyv_NdOAh9peQ7LUt1ngUvVYUJY5iQikqsPqAZI0LgkjN5gmakqgRmNRWf0GnOa0JoSZSYoZfF_XXGr3_x3bKA0BTHFRvIrimy61vcOeh9WBXdvklx5fqL4mEfhs5ln88K20ECO7jkn2HwMRx6fCj--CHF8eo2EW-7OMQRSBvoCxs3xoexG8LgzYRC_xl9bKHP7svbnKPfP24er27x8tfi59XlEltO6wELQw0Al9JYZZjhVrlKWdXWsq6FYIpIaWkNVJpGlQ7AVAoI54I21lSydXyOvk292xSfdi4Peh13KYwvNVNKEqkEEWOKTSmbYs7JtXqb_AbSXlOi_yvXk3I9KtcH5VqNEJ-gPIbDyqVj9TvUP00khzg</recordid><startdate>20230128</startdate><enddate>20230128</enddate><creator>Gao, Jia</creator><creator>Zhang, Yuan</creator><creator>Feng, Wenjing</creator><creator>Zhang, Ying</creator><creator>Cheng, Cui</creator><creator>Han, Xiao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2872-2956</orcidid></search><sort><creationdate>20230128</creationdate><title>GQDs-ε-PL and GQDs-ε-PL-based self-healing hydrogel: Synthesis, characterization and in vitro chemo-photothermal combined antibacterial</title><author>Gao, Jia ; Zhang, Yuan ; Feng, Wenjing ; Zhang, Ying ; Cheng, Cui ; Han, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4b1baa366bc7b2b3c7e87c7f96994427066c19a16bd75eaab87a03341dcb86fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antibacterial materials</topic><topic>Antiinfectives and antibacterials</topic><topic>Applied and Technical Physics</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Crosslinking</topic><topic>E coli</topic><topic>Hydrogels</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Pseudomonas aeruginosa</topic><topic>Raw materials</topic><topic>Specific gravity</topic><topic>Sterilization</topic><topic>Synthesis</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jia</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Feng, Wenjing</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Cheng, Cui</creatorcontrib><creatorcontrib>Han, Xiao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jia</au><au>Zhang, Yuan</au><au>Feng, Wenjing</au><au>Zhang, Ying</au><au>Cheng, Cui</au><au>Han, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GQDs-ε-PL and GQDs-ε-PL-based self-healing hydrogel: Synthesis, characterization and in vitro chemo-photothermal combined antibacterial</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2023-01-28</date><risdate>2023</risdate><volume>38</volume><issue>2</issue><spage>368</spage><epage>379</epage><pages>368-379</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Surface amino-rich GQDs-ε-PL is prepared by changing the addition amount of ε-PL. Then, GQDs-ε-PL@4-arm PEG-BA/QCS hydrogels (GQDs-ε-PL@Gel) are synthesized through dynamic imine bonds cross-linking. The sol can transform quickly to gel and the gelation time can be controlled by adjusting the specific gravity of the input raw materials to water. FT-IR and thermogravimetric analyses indicate the successful synthesis of GQDs-ε-PL and GQDs-ε-PL@Gel. The microstructure observation reveals that GQDs-ε-PL has a sheet-like structure with an average size of 65 nm, while GQDs-ε-PL@Gel has a porous network structure. Both GQDs-ε-PL and GQDs-ε-PL@Gel have good fluorescence stability, photothermal and cytocompatibility, and display better antibacterial effect against
Escherichia coli
,
Staphylococcus aureus
and
Pseudomonas aeruginosa
through chemical and photothermal synergistic sterilization. More importantly, GQDs-ε-PL@Gel can repeatedly self-heal after being damaged, which is more beneficial to provide an effective wound closure environment for wounds and to be used as wound dressings.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00816-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2872-2956</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2023-01, Vol.38 (2), p.368-379 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2776067404 |
source | SpringerNature Journals |
subjects | Antibacterial materials Antiinfectives and antibacterials Applied and Technical Physics Biocompatibility Biomaterials Chemistry and Materials Science Crosslinking E coli Hydrogels Inorganic Chemistry Materials Engineering Materials research Materials Science Nanotechnology Pseudomonas aeruginosa Raw materials Specific gravity Sterilization Synthesis Thermogravimetric analysis |
title | GQDs-ε-PL and GQDs-ε-PL-based self-healing hydrogel: Synthesis, characterization and in vitro chemo-photothermal combined antibacterial |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GQDs-%CE%B5-PL%20and%20GQDs-%CE%B5-PL-based%20self-healing%20hydrogel:%20Synthesis,%20characterization%20and%20in%20vitro%20chemo-photothermal%20combined%20antibacterial&rft.jtitle=Journal%20of%20materials%20research&rft.au=Gao,%20Jia&rft.date=2023-01-28&rft.volume=38&rft.issue=2&rft.spage=368&rft.epage=379&rft.pages=368-379&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00816-7&rft_dat=%3Cproquest_cross%3E2776067404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776067404&rft_id=info:pmid/&rfr_iscdi=true |