A Lightweight Intrusion Detection Model for 5G-enabled Industrial Internet

Aiming at the problem of 5G-enabled Industrial Internet intrusion detection algorithm optimization, this paper proposes a lightweight intrusion detection algorithm based on density-awared fuzzy clustering. Firstly, the algorithm introduces data local density and data feature distance into fuzzy clus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile networks and applications 2022-12, Vol.27 (6), p.2449-2458
Hauptverfasser: Kou, Liang, Ding, Shanshuo, Rao, Yong, Xu, Wei, Zhang, Jilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2458
container_issue 6
container_start_page 2449
container_title Mobile networks and applications
container_volume 27
creator Kou, Liang
Ding, Shanshuo
Rao, Yong
Xu, Wei
Zhang, Jilin
description Aiming at the problem of 5G-enabled Industrial Internet intrusion detection algorithm optimization, this paper proposes a lightweight intrusion detection algorithm based on density-awared fuzzy clustering. Firstly, the algorithm introduces data local density and data feature distance into fuzzy clustering method, which improves the clustering effectiveness and reduces the cluster convergence time. Secondly, the algorithm applies the fuzzy membership degree obtained by the improved fuzzy clustering method as the fuzzy factor for the fuzzy support vector machine to reduce the subjectivity caused by the artificial selection of the fuzzy factor, and minimize the influence of the noise point and the isolated point for the classification. The ICS dataset is used as the experimental data. The theoretical analysis and experimental results show that the proposed intrusion detection algorithm has the characteristics of high detection rate and low computational complexity, and can be applied to the application scenario of 5G-enabled Industrial Internet.
doi_str_mv 10.1007/s11036-021-01891-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775864996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775864996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a00348453d6b7bfcb767cd78404e1288c5acecfeb62f30e96424abf937a76a4f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMRvs-DNjVaAUFbGAxGY5zrmkCkmxHSH-fROCxMZyd8Pzvic9CF1Sck0JUTeRUsIkJjnFhOqCYnmEZlSoHGsq2PFwM80wl8XbKTqLcUcIEULzGXpcZJt6-56-YJzZuk2hj3XXZreQwKXxeuoqaDLfhUysMLS2bKAawKqPKdS2GTMQWkjn6MTbJsLF756j1_u7l-UD3jyv1svFBjtGi4QtIYxrLlglS1V6VyqpXKU0JxxorrUT1oHzUMrcMwKF5Dm3pS-Yskpa7tkcXU29-9B99hCT2XV9aIeXJldKaMmLQg5UPlEudDEG8GYf6g8bvg0lZnRmJmdmcGZ-nJkxxKZQHOB2C-Gv-p_UAcSJbr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775864996</pqid></control><display><type>article</type><title>A Lightweight Intrusion Detection Model for 5G-enabled Industrial Internet</title><source>SpringerNature Journals</source><creator>Kou, Liang ; Ding, Shanshuo ; Rao, Yong ; Xu, Wei ; Zhang, Jilin</creator><creatorcontrib>Kou, Liang ; Ding, Shanshuo ; Rao, Yong ; Xu, Wei ; Zhang, Jilin</creatorcontrib><description>Aiming at the problem of 5G-enabled Industrial Internet intrusion detection algorithm optimization, this paper proposes a lightweight intrusion detection algorithm based on density-awared fuzzy clustering. Firstly, the algorithm introduces data local density and data feature distance into fuzzy clustering method, which improves the clustering effectiveness and reduces the cluster convergence time. Secondly, the algorithm applies the fuzzy membership degree obtained by the improved fuzzy clustering method as the fuzzy factor for the fuzzy support vector machine to reduce the subjectivity caused by the artificial selection of the fuzzy factor, and minimize the influence of the noise point and the isolated point for the classification. The ICS dataset is used as the experimental data. The theoretical analysis and experimental results show that the proposed intrusion detection algorithm has the characteristics of high detection rate and low computational complexity, and can be applied to the application scenario of 5G-enabled Industrial Internet.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-021-01891-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Access control ; Algorithms ; Alliances ; Artificial intelligence ; Clustering ; Communication ; Communications Engineering ; Computer Communication Networks ; Data transmission ; Decision making ; Density ; Electrical Engineering ; Energy consumption ; Engineering ; Industrial production ; Information management ; Internet ; Intrusion ; IT in Business ; Lightweight ; Machine learning ; Malware ; Networks ; Nuclear power plants ; Optimization ; Ransomware ; Security management ; Servers ; Software ; Support vector machines</subject><ispartof>Mobile networks and applications, 2022-12, Vol.27 (6), p.2449-2458</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a00348453d6b7bfcb767cd78404e1288c5acecfeb62f30e96424abf937a76a4f3</citedby><cites>FETCH-LOGICAL-c319t-a00348453d6b7bfcb767cd78404e1288c5acecfeb62f30e96424abf937a76a4f3</cites><orcidid>0000-0003-1845-939X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-021-01891-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-021-01891-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Kou, Liang</creatorcontrib><creatorcontrib>Ding, Shanshuo</creatorcontrib><creatorcontrib>Rao, Yong</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Zhang, Jilin</creatorcontrib><title>A Lightweight Intrusion Detection Model for 5G-enabled Industrial Internet</title><title>Mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>Aiming at the problem of 5G-enabled Industrial Internet intrusion detection algorithm optimization, this paper proposes a lightweight intrusion detection algorithm based on density-awared fuzzy clustering. Firstly, the algorithm introduces data local density and data feature distance into fuzzy clustering method, which improves the clustering effectiveness and reduces the cluster convergence time. Secondly, the algorithm applies the fuzzy membership degree obtained by the improved fuzzy clustering method as the fuzzy factor for the fuzzy support vector machine to reduce the subjectivity caused by the artificial selection of the fuzzy factor, and minimize the influence of the noise point and the isolated point for the classification. The ICS dataset is used as the experimental data. The theoretical analysis and experimental results show that the proposed intrusion detection algorithm has the characteristics of high detection rate and low computational complexity, and can be applied to the application scenario of 5G-enabled Industrial Internet.</description><subject>Access control</subject><subject>Algorithms</subject><subject>Alliances</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Communication</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Data transmission</subject><subject>Decision making</subject><subject>Density</subject><subject>Electrical Engineering</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Industrial production</subject><subject>Information management</subject><subject>Internet</subject><subject>Intrusion</subject><subject>IT in Business</subject><subject>Lightweight</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Networks</subject><subject>Nuclear power plants</subject><subject>Optimization</subject><subject>Ransomware</subject><subject>Security management</subject><subject>Servers</subject><subject>Software</subject><subject>Support vector machines</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5giMRvs-DNjVaAUFbGAxGY5zrmkCkmxHSH-fROCxMZyd8Pzvic9CF1Sck0JUTeRUsIkJjnFhOqCYnmEZlSoHGsq2PFwM80wl8XbKTqLcUcIEULzGXpcZJt6-56-YJzZuk2hj3XXZreQwKXxeuoqaDLfhUysMLS2bKAawKqPKdS2GTMQWkjn6MTbJsLF756j1_u7l-UD3jyv1svFBjtGi4QtIYxrLlglS1V6VyqpXKU0JxxorrUT1oHzUMrcMwKF5Dm3pS-Yskpa7tkcXU29-9B99hCT2XV9aIeXJldKaMmLQg5UPlEudDEG8GYf6g8bvg0lZnRmJmdmcGZ-nJkxxKZQHOB2C-Gv-p_UAcSJbr8</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Kou, Liang</creator><creator>Ding, Shanshuo</creator><creator>Rao, Yong</creator><creator>Xu, Wei</creator><creator>Zhang, Jilin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1845-939X</orcidid></search><sort><creationdate>20221201</creationdate><title>A Lightweight Intrusion Detection Model for 5G-enabled Industrial Internet</title><author>Kou, Liang ; Ding, Shanshuo ; Rao, Yong ; Xu, Wei ; Zhang, Jilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a00348453d6b7bfcb767cd78404e1288c5acecfeb62f30e96424abf937a76a4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>Alliances</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Communication</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Data transmission</topic><topic>Decision making</topic><topic>Density</topic><topic>Electrical Engineering</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Industrial production</topic><topic>Information management</topic><topic>Internet</topic><topic>Intrusion</topic><topic>IT in Business</topic><topic>Lightweight</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Networks</topic><topic>Nuclear power plants</topic><topic>Optimization</topic><topic>Ransomware</topic><topic>Security management</topic><topic>Servers</topic><topic>Software</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, Liang</creatorcontrib><creatorcontrib>Ding, Shanshuo</creatorcontrib><creatorcontrib>Rao, Yong</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Zhang, Jilin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Liang</au><au>Ding, Shanshuo</au><au>Rao, Yong</au><au>Xu, Wei</au><au>Zhang, Jilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lightweight Intrusion Detection Model for 5G-enabled Industrial Internet</atitle><jtitle>Mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>27</volume><issue>6</issue><spage>2449</spage><epage>2458</epage><pages>2449-2458</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>Aiming at the problem of 5G-enabled Industrial Internet intrusion detection algorithm optimization, this paper proposes a lightweight intrusion detection algorithm based on density-awared fuzzy clustering. Firstly, the algorithm introduces data local density and data feature distance into fuzzy clustering method, which improves the clustering effectiveness and reduces the cluster convergence time. Secondly, the algorithm applies the fuzzy membership degree obtained by the improved fuzzy clustering method as the fuzzy factor for the fuzzy support vector machine to reduce the subjectivity caused by the artificial selection of the fuzzy factor, and minimize the influence of the noise point and the isolated point for the classification. The ICS dataset is used as the experimental data. The theoretical analysis and experimental results show that the proposed intrusion detection algorithm has the characteristics of high detection rate and low computational complexity, and can be applied to the application scenario of 5G-enabled Industrial Internet.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11036-021-01891-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1845-939X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1383-469X
ispartof Mobile networks and applications, 2022-12, Vol.27 (6), p.2449-2458
issn 1383-469X
1572-8153
language eng
recordid cdi_proquest_journals_2775864996
source SpringerNature Journals
subjects Access control
Algorithms
Alliances
Artificial intelligence
Clustering
Communication
Communications Engineering
Computer Communication Networks
Data transmission
Decision making
Density
Electrical Engineering
Energy consumption
Engineering
Industrial production
Information management
Internet
Intrusion
IT in Business
Lightweight
Machine learning
Malware
Networks
Nuclear power plants
Optimization
Ransomware
Security management
Servers
Software
Support vector machines
title A Lightweight Intrusion Detection Model for 5G-enabled Industrial Internet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lightweight%20Intrusion%20Detection%20Model%20for%205G-enabled%20Industrial%20Internet&rft.jtitle=Mobile%20networks%20and%20applications&rft.au=Kou,%20Liang&rft.date=2022-12-01&rft.volume=27&rft.issue=6&rft.spage=2449&rft.epage=2458&rft.pages=2449-2458&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-021-01891-6&rft_dat=%3Cproquest_cross%3E2775864996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775864996&rft_id=info:pmid/&rfr_iscdi=true