A Lightweight Intrusion Detection Model for 5G-enabled Industrial Internet
Aiming at the problem of 5G-enabled Industrial Internet intrusion detection algorithm optimization, this paper proposes a lightweight intrusion detection algorithm based on density-awared fuzzy clustering. Firstly, the algorithm introduces data local density and data feature distance into fuzzy clus...
Gespeichert in:
Veröffentlicht in: | Mobile networks and applications 2022-12, Vol.27 (6), p.2449-2458 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2458 |
---|---|
container_issue | 6 |
container_start_page | 2449 |
container_title | Mobile networks and applications |
container_volume | 27 |
creator | Kou, Liang Ding, Shanshuo Rao, Yong Xu, Wei Zhang, Jilin |
description | Aiming at the problem of 5G-enabled Industrial Internet intrusion detection algorithm optimization, this paper proposes a lightweight intrusion detection algorithm based on density-awared fuzzy clustering. Firstly, the algorithm introduces data local density and data feature distance into fuzzy clustering method, which improves the clustering effectiveness and reduces the cluster convergence time. Secondly, the algorithm applies the fuzzy membership degree obtained by the improved fuzzy clustering method as the fuzzy factor for the fuzzy support vector machine to reduce the subjectivity caused by the artificial selection of the fuzzy factor, and minimize the influence of the noise point and the isolated point for the classification. The ICS dataset is used as the experimental data. The theoretical analysis and experimental results show that the proposed intrusion detection algorithm has the characteristics of high detection rate and low computational complexity, and can be applied to the application scenario of 5G-enabled Industrial Internet. |
doi_str_mv | 10.1007/s11036-021-01891-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775864996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775864996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a00348453d6b7bfcb767cd78404e1288c5acecfeb62f30e96424abf937a76a4f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMRvs-DNjVaAUFbGAxGY5zrmkCkmxHSH-fROCxMZyd8Pzvic9CF1Sck0JUTeRUsIkJjnFhOqCYnmEZlSoHGsq2PFwM80wl8XbKTqLcUcIEULzGXpcZJt6-56-YJzZuk2hj3XXZreQwKXxeuoqaDLfhUysMLS2bKAawKqPKdS2GTMQWkjn6MTbJsLF756j1_u7l-UD3jyv1svFBjtGi4QtIYxrLlglS1V6VyqpXKU0JxxorrUT1oHzUMrcMwKF5Dm3pS-Yskpa7tkcXU29-9B99hCT2XV9aIeXJldKaMmLQg5UPlEudDEG8GYf6g8bvg0lZnRmJmdmcGZ-nJkxxKZQHOB2C-Gv-p_UAcSJbr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775864996</pqid></control><display><type>article</type><title>A Lightweight Intrusion Detection Model for 5G-enabled Industrial Internet</title><source>SpringerNature Journals</source><creator>Kou, Liang ; Ding, Shanshuo ; Rao, Yong ; Xu, Wei ; Zhang, Jilin</creator><creatorcontrib>Kou, Liang ; Ding, Shanshuo ; Rao, Yong ; Xu, Wei ; Zhang, Jilin</creatorcontrib><description>Aiming at the problem of 5G-enabled Industrial Internet intrusion detection algorithm optimization, this paper proposes a lightweight intrusion detection algorithm based on density-awared fuzzy clustering. Firstly, the algorithm introduces data local density and data feature distance into fuzzy clustering method, which improves the clustering effectiveness and reduces the cluster convergence time. Secondly, the algorithm applies the fuzzy membership degree obtained by the improved fuzzy clustering method as the fuzzy factor for the fuzzy support vector machine to reduce the subjectivity caused by the artificial selection of the fuzzy factor, and minimize the influence of the noise point and the isolated point for the classification. The ICS dataset is used as the experimental data. The theoretical analysis and experimental results show that the proposed intrusion detection algorithm has the characteristics of high detection rate and low computational complexity, and can be applied to the application scenario of 5G-enabled Industrial Internet.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-021-01891-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Access control ; Algorithms ; Alliances ; Artificial intelligence ; Clustering ; Communication ; Communications Engineering ; Computer Communication Networks ; Data transmission ; Decision making ; Density ; Electrical Engineering ; Energy consumption ; Engineering ; Industrial production ; Information management ; Internet ; Intrusion ; IT in Business ; Lightweight ; Machine learning ; Malware ; Networks ; Nuclear power plants ; Optimization ; Ransomware ; Security management ; Servers ; Software ; Support vector machines</subject><ispartof>Mobile networks and applications, 2022-12, Vol.27 (6), p.2449-2458</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a00348453d6b7bfcb767cd78404e1288c5acecfeb62f30e96424abf937a76a4f3</citedby><cites>FETCH-LOGICAL-c319t-a00348453d6b7bfcb767cd78404e1288c5acecfeb62f30e96424abf937a76a4f3</cites><orcidid>0000-0003-1845-939X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-021-01891-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-021-01891-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Kou, Liang</creatorcontrib><creatorcontrib>Ding, Shanshuo</creatorcontrib><creatorcontrib>Rao, Yong</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Zhang, Jilin</creatorcontrib><title>A Lightweight Intrusion Detection Model for 5G-enabled Industrial Internet</title><title>Mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>Aiming at the problem of 5G-enabled Industrial Internet intrusion detection algorithm optimization, this paper proposes a lightweight intrusion detection algorithm based on density-awared fuzzy clustering. Firstly, the algorithm introduces data local density and data feature distance into fuzzy clustering method, which improves the clustering effectiveness and reduces the cluster convergence time. Secondly, the algorithm applies the fuzzy membership degree obtained by the improved fuzzy clustering method as the fuzzy factor for the fuzzy support vector machine to reduce the subjectivity caused by the artificial selection of the fuzzy factor, and minimize the influence of the noise point and the isolated point for the classification. The ICS dataset is used as the experimental data. The theoretical analysis and experimental results show that the proposed intrusion detection algorithm has the characteristics of high detection rate and low computational complexity, and can be applied to the application scenario of 5G-enabled Industrial Internet.</description><subject>Access control</subject><subject>Algorithms</subject><subject>Alliances</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Communication</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Data transmission</subject><subject>Decision making</subject><subject>Density</subject><subject>Electrical Engineering</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Industrial production</subject><subject>Information management</subject><subject>Internet</subject><subject>Intrusion</subject><subject>IT in Business</subject><subject>Lightweight</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Networks</subject><subject>Nuclear power plants</subject><subject>Optimization</subject><subject>Ransomware</subject><subject>Security management</subject><subject>Servers</subject><subject>Software</subject><subject>Support vector machines</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5giMRvs-DNjVaAUFbGAxGY5zrmkCkmxHSH-fROCxMZyd8Pzvic9CF1Sck0JUTeRUsIkJjnFhOqCYnmEZlSoHGsq2PFwM80wl8XbKTqLcUcIEULzGXpcZJt6-56-YJzZuk2hj3XXZreQwKXxeuoqaDLfhUysMLS2bKAawKqPKdS2GTMQWkjn6MTbJsLF756j1_u7l-UD3jyv1svFBjtGi4QtIYxrLlglS1V6VyqpXKU0JxxorrUT1oHzUMrcMwKF5Dm3pS-Yskpa7tkcXU29-9B99hCT2XV9aIeXJldKaMmLQg5UPlEudDEG8GYf6g8bvg0lZnRmJmdmcGZ-nJkxxKZQHOB2C-Gv-p_UAcSJbr8</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Kou, Liang</creator><creator>Ding, Shanshuo</creator><creator>Rao, Yong</creator><creator>Xu, Wei</creator><creator>Zhang, Jilin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1845-939X</orcidid></search><sort><creationdate>20221201</creationdate><title>A Lightweight Intrusion Detection Model for 5G-enabled Industrial Internet</title><author>Kou, Liang ; Ding, Shanshuo ; Rao, Yong ; Xu, Wei ; Zhang, Jilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a00348453d6b7bfcb767cd78404e1288c5acecfeb62f30e96424abf937a76a4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>Alliances</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Communication</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Data transmission</topic><topic>Decision making</topic><topic>Density</topic><topic>Electrical Engineering</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Industrial production</topic><topic>Information management</topic><topic>Internet</topic><topic>Intrusion</topic><topic>IT in Business</topic><topic>Lightweight</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Networks</topic><topic>Nuclear power plants</topic><topic>Optimization</topic><topic>Ransomware</topic><topic>Security management</topic><topic>Servers</topic><topic>Software</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, Liang</creatorcontrib><creatorcontrib>Ding, Shanshuo</creatorcontrib><creatorcontrib>Rao, Yong</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Zhang, Jilin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Liang</au><au>Ding, Shanshuo</au><au>Rao, Yong</au><au>Xu, Wei</au><au>Zhang, Jilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lightweight Intrusion Detection Model for 5G-enabled Industrial Internet</atitle><jtitle>Mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>27</volume><issue>6</issue><spage>2449</spage><epage>2458</epage><pages>2449-2458</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>Aiming at the problem of 5G-enabled Industrial Internet intrusion detection algorithm optimization, this paper proposes a lightweight intrusion detection algorithm based on density-awared fuzzy clustering. Firstly, the algorithm introduces data local density and data feature distance into fuzzy clustering method, which improves the clustering effectiveness and reduces the cluster convergence time. Secondly, the algorithm applies the fuzzy membership degree obtained by the improved fuzzy clustering method as the fuzzy factor for the fuzzy support vector machine to reduce the subjectivity caused by the artificial selection of the fuzzy factor, and minimize the influence of the noise point and the isolated point for the classification. The ICS dataset is used as the experimental data. The theoretical analysis and experimental results show that the proposed intrusion detection algorithm has the characteristics of high detection rate and low computational complexity, and can be applied to the application scenario of 5G-enabled Industrial Internet.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11036-021-01891-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1845-939X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-469X |
ispartof | Mobile networks and applications, 2022-12, Vol.27 (6), p.2449-2458 |
issn | 1383-469X 1572-8153 |
language | eng |
recordid | cdi_proquest_journals_2775864996 |
source | SpringerNature Journals |
subjects | Access control Algorithms Alliances Artificial intelligence Clustering Communication Communications Engineering Computer Communication Networks Data transmission Decision making Density Electrical Engineering Energy consumption Engineering Industrial production Information management Internet Intrusion IT in Business Lightweight Machine learning Malware Networks Nuclear power plants Optimization Ransomware Security management Servers Software Support vector machines |
title | A Lightweight Intrusion Detection Model for 5G-enabled Industrial Internet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lightweight%20Intrusion%20Detection%20Model%20for%205G-enabled%20Industrial%20Internet&rft.jtitle=Mobile%20networks%20and%20applications&rft.au=Kou,%20Liang&rft.date=2022-12-01&rft.volume=27&rft.issue=6&rft.spage=2449&rft.epage=2458&rft.pages=2449-2458&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-021-01891-6&rft_dat=%3Cproquest_cross%3E2775864996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775864996&rft_id=info:pmid/&rfr_iscdi=true |