Event Temporal Relation Extraction with Bayesian Translational Model
Existing models to extract temporal relations between events lack a principled method to incorporate external knowledge. In this study, we introduce Bayesian-Trans, a Bayesian learning-based method that models the temporal relation representations as latent variables and infers their values via Baye...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tan, Xingwei Pergola, Gabriele He, Yulan |
description | Existing models to extract temporal relations between events lack a principled method to incorporate external knowledge. In this study, we introduce Bayesian-Trans, a Bayesian learning-based method that models the temporal relation representations as latent variables and infers their values via Bayesian inference and translational functions. Compared to conventional neural approaches, instead of performing point estimation to find the best set parameters, the proposed model infers the parameters' posterior distribution directly, enhancing the model's capability to encode and express uncertainty about the predictions. Experimental results on the three widely used datasets show that Bayesian-Trans outperforms existing approaches for event temporal relation extraction. We additionally present detailed analyses on uncertainty quantification, comparison of priors, and ablation studies, illustrating the benefits of the proposed approach. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2775847996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775847996</sourcerecordid><originalsourceid>FETCH-proquest_journals_27758479963</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcS1LzStRCEnNLcgvSsxRCErNSSzJzM9TcK0oKUpMBjPLM0syFJwSK1OLMxPzFEKKEvOKIYqA6n3zU1JzeBhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmkRUHlxvJG5uamFibmlpZkxcaoAYzg7Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775847996</pqid></control><display><type>article</type><title>Event Temporal Relation Extraction with Bayesian Translational Model</title><source>Free E- Journals</source><creator>Tan, Xingwei ; Pergola, Gabriele ; He, Yulan</creator><creatorcontrib>Tan, Xingwei ; Pergola, Gabriele ; He, Yulan</creatorcontrib><description>Existing models to extract temporal relations between events lack a principled method to incorporate external knowledge. In this study, we introduce Bayesian-Trans, a Bayesian learning-based method that models the temporal relation representations as latent variables and infers their values via Bayesian inference and translational functions. Compared to conventional neural approaches, instead of performing point estimation to find the best set parameters, the proposed model infers the parameters' posterior distribution directly, enhancing the model's capability to encode and express uncertainty about the predictions. Experimental results on the three widely used datasets show that Bayesian-Trans outperforms existing approaches for event temporal relation extraction. We additionally present detailed analyses on uncertainty quantification, comparison of priors, and ablation studies, illustrating the benefits of the proposed approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ablation ; Bayesian analysis ; Machine learning ; Mathematical models ; Parameters ; Statistical inference ; Uncertainty</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tan, Xingwei</creatorcontrib><creatorcontrib>Pergola, Gabriele</creatorcontrib><creatorcontrib>He, Yulan</creatorcontrib><title>Event Temporal Relation Extraction with Bayesian Translational Model</title><title>arXiv.org</title><description>Existing models to extract temporal relations between events lack a principled method to incorporate external knowledge. In this study, we introduce Bayesian-Trans, a Bayesian learning-based method that models the temporal relation representations as latent variables and infers their values via Bayesian inference and translational functions. Compared to conventional neural approaches, instead of performing point estimation to find the best set parameters, the proposed model infers the parameters' posterior distribution directly, enhancing the model's capability to encode and express uncertainty about the predictions. Experimental results on the three widely used datasets show that Bayesian-Trans outperforms existing approaches for event temporal relation extraction. We additionally present detailed analyses on uncertainty quantification, comparison of priors, and ablation studies, illustrating the benefits of the proposed approach.</description><subject>Ablation</subject><subject>Bayesian analysis</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Statistical inference</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcS1LzStRCEnNLcgvSsxRCErNSSzJzM9TcK0oKUpMBjPLM0syFJwSK1OLMxPzFEKKEvOKIYqA6n3zU1JzeBhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmkRUHlxvJG5uamFibmlpZkxcaoAYzg7Aw</recordid><startdate>20230210</startdate><enddate>20230210</enddate><creator>Tan, Xingwei</creator><creator>Pergola, Gabriele</creator><creator>He, Yulan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230210</creationdate><title>Event Temporal Relation Extraction with Bayesian Translational Model</title><author>Tan, Xingwei ; Pergola, Gabriele ; He, Yulan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27758479963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Bayesian analysis</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Statistical inference</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Tan, Xingwei</creatorcontrib><creatorcontrib>Pergola, Gabriele</creatorcontrib><creatorcontrib>He, Yulan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Xingwei</au><au>Pergola, Gabriele</au><au>He, Yulan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Event Temporal Relation Extraction with Bayesian Translational Model</atitle><jtitle>arXiv.org</jtitle><date>2023-02-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Existing models to extract temporal relations between events lack a principled method to incorporate external knowledge. In this study, we introduce Bayesian-Trans, a Bayesian learning-based method that models the temporal relation representations as latent variables and infers their values via Bayesian inference and translational functions. Compared to conventional neural approaches, instead of performing point estimation to find the best set parameters, the proposed model infers the parameters' posterior distribution directly, enhancing the model's capability to encode and express uncertainty about the predictions. Experimental results on the three widely used datasets show that Bayesian-Trans outperforms existing approaches for event temporal relation extraction. We additionally present detailed analyses on uncertainty quantification, comparison of priors, and ablation studies, illustrating the benefits of the proposed approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2775847996 |
source | Free E- Journals |
subjects | Ablation Bayesian analysis Machine learning Mathematical models Parameters Statistical inference Uncertainty |
title | Event Temporal Relation Extraction with Bayesian Translational Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Event%20Temporal%20Relation%20Extraction%20with%20Bayesian%20Translational%20Model&rft.jtitle=arXiv.org&rft.au=Tan,%20Xingwei&rft.date=2023-02-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2775847996%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775847996&rft_id=info:pmid/&rfr_iscdi=true |