Digital Hermits

When a user shares multi-dimensional data about themselves with a firm, the firm learns about the correlations of different dimensions of user data. We incorporate this type of learning into a model of a data market in which a firm acquires data from users with privacy concerns. User data is multi-d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NBER Working Paper Series 2023-02
Hauptverfasser: Miklós-Thal, Jeanine, Goldfarb, Avi, Haviv, Avery M, Tucker, Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title NBER Working Paper Series
container_volume
creator Miklós-Thal, Jeanine
Goldfarb, Avi
Haviv, Avery M
Tucker, Catherine
description When a user shares multi-dimensional data about themselves with a firm, the firm learns about the correlations of different dimensions of user data. We incorporate this type of learning into a model of a data market in which a firm acquires data from users with privacy concerns. User data is multi-dimensional, and each user can share no data, only non-sensitive data, or their full data with the firm. As the firm collects more data and becomes better at drawing inferences about a user’s privacy-sensitive data from their non-sensitive data, the share of new users who share no data (“digital hermits”) grows. At the same time, the share of new users who share their full data also grows. The model therefore predicts a polarization of users’ data sharing choices away from non-sensitive data sharing to no sharing and full sharing.
doi_str_mv 10.3386/w30920
format Article
fullrecord <record><control><sourceid>proquest_nber_</sourceid><recordid>TN_cdi_proquest_journals_2775839019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nber_id>w30920</nber_id><sourcerecordid>2775839019</sourcerecordid><originalsourceid>FETCH-LOGICAL-n479-abfadbde08b2e1db4b37a9d8e8dc720165e23d582585cc5438d6789e0421e57c3</originalsourceid><addsrcrecordid>eNotj79vwjAQRj1QqZTS7kyVOqc938XxeazoDyohsbBHdnxUQRCoHVTx34OUTm95ep8-pR40vBBx9fpH4BBGagzsuEBH9lbd5bwFQGbQY_X43v60vd89LSTt2z7fq5uN32WZ_nOi1p8f6_miWK6-vudvy6IrrSt82PgYogAHFB1DGch6F1k4NhZBV0aQomE0bJrGlMSxsuwEStRibEMT9Txkj-nwe5Lc19vDKXXXxRqtNUwOtLtas8HqgqT6mNq9T-d6-EQX9Bg90A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775839019</pqid></control><display><type>article</type><title>Digital Hermits</title><source>National Bureau of Economic Research Publications</source><source>Alma/SFX Local Collection</source><creator>Miklós-Thal, Jeanine ; Goldfarb, Avi ; Haviv, Avery M ; Tucker, Catherine</creator><creatorcontrib>Miklós-Thal, Jeanine ; Goldfarb, Avi ; Haviv, Avery M ; Tucker, Catherine</creatorcontrib><description>When a user shares multi-dimensional data about themselves with a firm, the firm learns about the correlations of different dimensions of user data. We incorporate this type of learning into a model of a data market in which a firm acquires data from users with privacy concerns. User data is multi-dimensional, and each user can share no data, only non-sensitive data, or their full data with the firm. As the firm collects more data and becomes better at drawing inferences about a user’s privacy-sensitive data from their non-sensitive data, the share of new users who share no data (“digital hermits”) grows. At the same time, the share of new users who share their full data also grows. The model therefore predicts a polarization of users’ data sharing choices away from non-sensitive data sharing to no sharing and full sharing.</description><identifier>ISSN: 0898-2937</identifier><identifier>DOI: 10.3386/w30920</identifier><language>eng</language><publisher>Cambridge: National Bureau of Economic Research</publisher><subject>Economic theory ; Industrial Organization ; Productivity, Innovation, and Entrepreneurship</subject><ispartof>NBER Working Paper Series, 2023-02</ispartof><rights>Copyright National Bureau of Economic Research, Inc. 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27924</link.rule.ids></links><search><creatorcontrib>Miklós-Thal, Jeanine</creatorcontrib><creatorcontrib>Goldfarb, Avi</creatorcontrib><creatorcontrib>Haviv, Avery M</creatorcontrib><creatorcontrib>Tucker, Catherine</creatorcontrib><title>Digital Hermits</title><title>NBER Working Paper Series</title><description>When a user shares multi-dimensional data about themselves with a firm, the firm learns about the correlations of different dimensions of user data. We incorporate this type of learning into a model of a data market in which a firm acquires data from users with privacy concerns. User data is multi-dimensional, and each user can share no data, only non-sensitive data, or their full data with the firm. As the firm collects more data and becomes better at drawing inferences about a user’s privacy-sensitive data from their non-sensitive data, the share of new users who share no data (“digital hermits”) grows. At the same time, the share of new users who share their full data also grows. The model therefore predicts a polarization of users’ data sharing choices away from non-sensitive data sharing to no sharing and full sharing.</description><subject>Economic theory</subject><subject>Industrial Organization</subject><subject>Productivity, Innovation, and Entrepreneurship</subject><issn>0898-2937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>NBR</sourceid><recordid>eNotj79vwjAQRj1QqZTS7kyVOqc938XxeazoDyohsbBHdnxUQRCoHVTx34OUTm95ep8-pR40vBBx9fpH4BBGagzsuEBH9lbd5bwFQGbQY_X43v60vd89LSTt2z7fq5uN32WZ_nOi1p8f6_miWK6-vudvy6IrrSt82PgYogAHFB1DGch6F1k4NhZBV0aQomE0bJrGlMSxsuwEStRibEMT9Txkj-nwe5Lc19vDKXXXxRqtNUwOtLtas8HqgqT6mNq9T-d6-EQX9Bg90A</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Miklós-Thal, Jeanine</creator><creator>Goldfarb, Avi</creator><creator>Haviv, Avery M</creator><creator>Tucker, Catherine</creator><general>National Bureau of Economic Research</general><general>National Bureau of Economic Research, Inc</general><scope>CZO</scope><scope>MPB</scope><scope>NBR</scope><scope>XD6</scope></search><sort><creationdate>20230201</creationdate><title>Digital Hermits</title><author>Miklós-Thal, Jeanine ; Goldfarb, Avi ; Haviv, Avery M ; Tucker, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n479-abfadbde08b2e1db4b37a9d8e8dc720165e23d582585cc5438d6789e0421e57c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Economic theory</topic><topic>Industrial Organization</topic><topic>Productivity, Innovation, and Entrepreneurship</topic><toplevel>online_resources</toplevel><creatorcontrib>Miklós-Thal, Jeanine</creatorcontrib><creatorcontrib>Goldfarb, Avi</creatorcontrib><creatorcontrib>Haviv, Avery M</creatorcontrib><creatorcontrib>Tucker, Catherine</creatorcontrib><collection>NBER Working Papers</collection><collection>NBER</collection><collection>National Bureau of Economic Research Publications</collection><collection>NBER Technical Working Papers Archive</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miklós-Thal, Jeanine</au><au>Goldfarb, Avi</au><au>Haviv, Avery M</au><au>Tucker, Catherine</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Digital Hermits</atitle><jtitle>NBER Working Paper Series</jtitle><date>2023-02-01</date><risdate>2023</risdate><issn>0898-2937</issn><abstract>When a user shares multi-dimensional data about themselves with a firm, the firm learns about the correlations of different dimensions of user data. We incorporate this type of learning into a model of a data market in which a firm acquires data from users with privacy concerns. User data is multi-dimensional, and each user can share no data, only non-sensitive data, or their full data with the firm. As the firm collects more data and becomes better at drawing inferences about a user’s privacy-sensitive data from their non-sensitive data, the share of new users who share no data (“digital hermits”) grows. At the same time, the share of new users who share their full data also grows. The model therefore predicts a polarization of users’ data sharing choices away from non-sensitive data sharing to no sharing and full sharing.</abstract><cop>Cambridge</cop><pub>National Bureau of Economic Research</pub><doi>10.3386/w30920</doi></addata></record>
fulltext fulltext
identifier ISSN: 0898-2937
ispartof NBER Working Paper Series, 2023-02
issn 0898-2937
language eng
recordid cdi_proquest_journals_2775839019
source National Bureau of Economic Research Publications; Alma/SFX Local Collection
subjects Economic theory
Industrial Organization
Productivity, Innovation, and Entrepreneurship
title Digital Hermits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nber_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Digital%20Hermits&rft.jtitle=NBER%20Working%20Paper%20Series&rft.au=Mikl%C3%B3s-Thal,%20Jeanine&rft.date=2023-02-01&rft.issn=0898-2937&rft_id=info:doi/10.3386/w30920&rft_dat=%3Cproquest_nber_%3E2775839019%3C/proquest_nber_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775839019&rft_id=info:pmid/&rft_nber_id=w30920&rfr_iscdi=true