Specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate and alkaline phosphatase
The purpose of this study was to achieve a specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate (ATP) and alkaline phosphatase (ALP). Based on the Faraday-cage concept reported first by our group, we built a new outer Helmholtz plane (O...
Gespeichert in:
Veröffentlicht in: | Journal of applied electrochemistry 2023-03, Vol.53 (3), p.547-557 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 557 |
---|---|
container_issue | 3 |
container_start_page | 547 |
container_title | Journal of applied electrochemistry |
container_volume | 53 |
creator | Hu, Kaiyue Ren, Xinxin Qin, Lingxia Guo, Zhiyong Wu, Di Wang, Sui Hu, Yufang |
description | The purpose of this study was to achieve a specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate (ATP) and alkaline phosphatase (ALP). Based on the Faraday-cage concept reported first by our group, we built a new outer Helmholtz plane (OHP)-based electrochemical biosensor by using an unique nanocomposite involving three-dimensional graphene-Au nanoparticles (3D-GO-AuNPs), tetrahedral DNA nanostructures (TDNs), and separated ATP aptamers, in which methylene blue (MB) was employed as the electrochemical signal output. In this process, the prepared nanocomposites were attached favorably onto the TDN substrate electrode surface due to the interaction of ATP and its aptamer, creating a better OHP of the electrode owing to its large enough specific surface area; then a detection limit of 0.25 pM was calculated by 3
δ
/slope. Whereas, the hydrolysis for ATP of ALP can hinder this binding process, therefore, the biosensor could be indirectly applied for ALP analysis with a detection limit of 0.21 mU/L (3
δ
/slope). Since some small changes of the two targets will set off a whole series of changes in system, the OHP-extended biosensor provides a superior electrochemical platform for complex biological processes with causal relationships in clinical diagnosis and drug development, similar to the butterfly effect.
Graphical abstract |
doi_str_mv | 10.1007/s10800-022-01789-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775392703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775392703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-72157e455aeba93258c24dcdd105c842b2d1f990153ebd1b8490bd40a1fb0dad3</originalsourceid><addsrcrecordid>eNp9UM1OGzEQtioqNdC-QE-WOJuOveuutzcUFYqExAEq9Wb5Z5xssrG39uaQh-g71yEgbpxGM9-f5iPkK4crDtB9KxwUAAMhGPBO9Ux-IAsuO8GUatQZWQAIzlTP_3wi56VsAKAX39sF-fc4oRvC4Og-jslth7iiKdB5jdTu5xlzGA8UQ0A3_6DRxDTE49E4ZNYU9BTHCuXk1rgbnBmpHVLBWF58jMeY6oJ0zsO0TmVamxmpiZ6acWvGI_J6rnafycdgxoJfXuYF-X3z82n5i90_3N4tr--ZEx3MrBP1NWylNGhN3wipnGi9856DdKoVVnge-h64bNB6blXbg_UtGB4seOObC3J58p1y-rvHMutN2udYI7XoOtn0NaapLHFiuZxKyRj0lIedyQfNQR9r16fada1dP9euZRU1J1Gp5LjC_Gb9juo_DJqJdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775392703</pqid></control><display><type>article</type><title>Specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate and alkaline phosphatase</title><source>Springer Nature - Complete Springer Journals</source><creator>Hu, Kaiyue ; Ren, Xinxin ; Qin, Lingxia ; Guo, Zhiyong ; Wu, Di ; Wang, Sui ; Hu, Yufang</creator><creatorcontrib>Hu, Kaiyue ; Ren, Xinxin ; Qin, Lingxia ; Guo, Zhiyong ; Wu, Di ; Wang, Sui ; Hu, Yufang</creatorcontrib><description>The purpose of this study was to achieve a specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate (ATP) and alkaline phosphatase (ALP). Based on the Faraday-cage concept reported first by our group, we built a new outer Helmholtz plane (OHP)-based electrochemical biosensor by using an unique nanocomposite involving three-dimensional graphene-Au nanoparticles (3D-GO-AuNPs), tetrahedral DNA nanostructures (TDNs), and separated ATP aptamers, in which methylene blue (MB) was employed as the electrochemical signal output. In this process, the prepared nanocomposites were attached favorably onto the TDN substrate electrode surface due to the interaction of ATP and its aptamer, creating a better OHP of the electrode owing to its large enough specific surface area; then a detection limit of 0.25 pM was calculated by 3
δ
/slope. Whereas, the hydrolysis for ATP of ALP can hinder this binding process, therefore, the biosensor could be indirectly applied for ALP analysis with a detection limit of 0.21 mU/L (3
δ
/slope). Since some small changes of the two targets will set off a whole series of changes in system, the OHP-extended biosensor provides a superior electrochemical platform for complex biological processes with causal relationships in clinical diagnosis and drug development, similar to the butterfly effect.
Graphical abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-022-01789-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adenosine triphosphate ; Alkaline phosphatase ; Biological activity ; Biosensors ; Chemistry ; Chemistry and Materials Science ; Electrochemistry ; Electrodes ; Gold ; Graphene ; Industrial Chemistry/Chemical Engineering ; Methylene blue ; Nanocomposites ; Nanoparticles ; Phosphatase ; Physical Chemistry ; Research Article ; Signal processing ; Substrates</subject><ispartof>Journal of applied electrochemistry, 2023-03, Vol.53 (3), p.547-557</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-72157e455aeba93258c24dcdd105c842b2d1f990153ebd1b8490bd40a1fb0dad3</cites><orcidid>0000-0002-5973-2527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-022-01789-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-022-01789-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Hu, Kaiyue</creatorcontrib><creatorcontrib>Ren, Xinxin</creatorcontrib><creatorcontrib>Qin, Lingxia</creatorcontrib><creatorcontrib>Guo, Zhiyong</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Wang, Sui</creatorcontrib><creatorcontrib>Hu, Yufang</creatorcontrib><title>Specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate and alkaline phosphatase</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>The purpose of this study was to achieve a specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate (ATP) and alkaline phosphatase (ALP). Based on the Faraday-cage concept reported first by our group, we built a new outer Helmholtz plane (OHP)-based electrochemical biosensor by using an unique nanocomposite involving three-dimensional graphene-Au nanoparticles (3D-GO-AuNPs), tetrahedral DNA nanostructures (TDNs), and separated ATP aptamers, in which methylene blue (MB) was employed as the electrochemical signal output. In this process, the prepared nanocomposites were attached favorably onto the TDN substrate electrode surface due to the interaction of ATP and its aptamer, creating a better OHP of the electrode owing to its large enough specific surface area; then a detection limit of 0.25 pM was calculated by 3
δ
/slope. Whereas, the hydrolysis for ATP of ALP can hinder this binding process, therefore, the biosensor could be indirectly applied for ALP analysis with a detection limit of 0.21 mU/L (3
δ
/slope). Since some small changes of the two targets will set off a whole series of changes in system, the OHP-extended biosensor provides a superior electrochemical platform for complex biological processes with causal relationships in clinical diagnosis and drug development, similar to the butterfly effect.
Graphical abstract</description><subject>Adenosine triphosphate</subject><subject>Alkaline phosphatase</subject><subject>Biological activity</subject><subject>Biosensors</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Gold</subject><subject>Graphene</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Methylene blue</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Phosphatase</subject><subject>Physical Chemistry</subject><subject>Research Article</subject><subject>Signal processing</subject><subject>Substrates</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UM1OGzEQtioqNdC-QE-WOJuOveuutzcUFYqExAEq9Wb5Z5xssrG39uaQh-g71yEgbpxGM9-f5iPkK4crDtB9KxwUAAMhGPBO9Ux-IAsuO8GUatQZWQAIzlTP_3wi56VsAKAX39sF-fc4oRvC4Og-jslth7iiKdB5jdTu5xlzGA8UQ0A3_6DRxDTE49E4ZNYU9BTHCuXk1rgbnBmpHVLBWF58jMeY6oJ0zsO0TmVamxmpiZ6acWvGI_J6rnafycdgxoJfXuYF-X3z82n5i90_3N4tr--ZEx3MrBP1NWylNGhN3wipnGi9856DdKoVVnge-h64bNB6blXbg_UtGB4seOObC3J58p1y-rvHMutN2udYI7XoOtn0NaapLHFiuZxKyRj0lIedyQfNQR9r16fada1dP9euZRU1J1Gp5LjC_Gb9juo_DJqJdg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Hu, Kaiyue</creator><creator>Ren, Xinxin</creator><creator>Qin, Lingxia</creator><creator>Guo, Zhiyong</creator><creator>Wu, Di</creator><creator>Wang, Sui</creator><creator>Hu, Yufang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5973-2527</orcidid></search><sort><creationdate>20230301</creationdate><title>Specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate and alkaline phosphatase</title><author>Hu, Kaiyue ; Ren, Xinxin ; Qin, Lingxia ; Guo, Zhiyong ; Wu, Di ; Wang, Sui ; Hu, Yufang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-72157e455aeba93258c24dcdd105c842b2d1f990153ebd1b8490bd40a1fb0dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenosine triphosphate</topic><topic>Alkaline phosphatase</topic><topic>Biological activity</topic><topic>Biosensors</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Gold</topic><topic>Graphene</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Methylene blue</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Phosphatase</topic><topic>Physical Chemistry</topic><topic>Research Article</topic><topic>Signal processing</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Kaiyue</creatorcontrib><creatorcontrib>Ren, Xinxin</creatorcontrib><creatorcontrib>Qin, Lingxia</creatorcontrib><creatorcontrib>Guo, Zhiyong</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Wang, Sui</creatorcontrib><creatorcontrib>Hu, Yufang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Kaiyue</au><au>Ren, Xinxin</au><au>Qin, Lingxia</au><au>Guo, Zhiyong</au><au>Wu, Di</au><au>Wang, Sui</au><au>Hu, Yufang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate and alkaline phosphatase</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>53</volume><issue>3</issue><spage>547</spage><epage>557</epage><pages>547-557</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>The purpose of this study was to achieve a specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate (ATP) and alkaline phosphatase (ALP). Based on the Faraday-cage concept reported first by our group, we built a new outer Helmholtz plane (OHP)-based electrochemical biosensor by using an unique nanocomposite involving three-dimensional graphene-Au nanoparticles (3D-GO-AuNPs), tetrahedral DNA nanostructures (TDNs), and separated ATP aptamers, in which methylene blue (MB) was employed as the electrochemical signal output. In this process, the prepared nanocomposites were attached favorably onto the TDN substrate electrode surface due to the interaction of ATP and its aptamer, creating a better OHP of the electrode owing to its large enough specific surface area; then a detection limit of 0.25 pM was calculated by 3
δ
/slope. Whereas, the hydrolysis for ATP of ALP can hinder this binding process, therefore, the biosensor could be indirectly applied for ALP analysis with a detection limit of 0.21 mU/L (3
δ
/slope). Since some small changes of the two targets will set off a whole series of changes in system, the OHP-extended biosensor provides a superior electrochemical platform for complex biological processes with causal relationships in clinical diagnosis and drug development, similar to the butterfly effect.
Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-022-01789-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5973-2527</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-891X |
ispartof | Journal of applied electrochemistry, 2023-03, Vol.53 (3), p.547-557 |
issn | 0021-891X 1572-8838 |
language | eng |
recordid | cdi_proquest_journals_2775392703 |
source | Springer Nature - Complete Springer Journals |
subjects | Adenosine triphosphate Alkaline phosphatase Biological activity Biosensors Chemistry Chemistry and Materials Science Electrochemistry Electrodes Gold Graphene Industrial Chemistry/Chemical Engineering Methylene blue Nanocomposites Nanoparticles Phosphatase Physical Chemistry Research Article Signal processing Substrates |
title | Specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate and alkaline phosphatase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specific%20unlocking%20of%20the%20butterfly%20effect:%20nanointerface-based%20electrochemical%20biosensing%20of%20adenosine%20triphosphate%20and%20alkaline%20phosphatase&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Hu,%20Kaiyue&rft.date=2023-03-01&rft.volume=53&rft.issue=3&rft.spage=547&rft.epage=557&rft.pages=547-557&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-022-01789-5&rft_dat=%3Cproquest_cross%3E2775392703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775392703&rft_id=info:pmid/&rfr_iscdi=true |