Specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate and alkaline phosphatase

The purpose of this study was to achieve a specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate (ATP) and alkaline phosphatase (ALP). Based on the Faraday-cage concept reported first by our group, we built a new outer Helmholtz plane (O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied electrochemistry 2023-03, Vol.53 (3), p.547-557
Hauptverfasser: Hu, Kaiyue, Ren, Xinxin, Qin, Lingxia, Guo, Zhiyong, Wu, Di, Wang, Sui, Hu, Yufang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 557
container_issue 3
container_start_page 547
container_title Journal of applied electrochemistry
container_volume 53
creator Hu, Kaiyue
Ren, Xinxin
Qin, Lingxia
Guo, Zhiyong
Wu, Di
Wang, Sui
Hu, Yufang
description The purpose of this study was to achieve a specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate (ATP) and alkaline phosphatase (ALP). Based on the Faraday-cage concept reported first by our group, we built a new outer Helmholtz plane (OHP)-based electrochemical biosensor by using an unique nanocomposite involving three-dimensional graphene-Au nanoparticles (3D-GO-AuNPs), tetrahedral DNA nanostructures (TDNs), and separated ATP aptamers, in which methylene blue (MB) was employed as the electrochemical signal output. In this process, the prepared nanocomposites were attached favorably onto the TDN substrate electrode surface due to the interaction of ATP and its aptamer, creating a better OHP of the electrode owing to its large enough specific surface area; then a detection limit of 0.25 pM was calculated by 3 δ /slope. Whereas, the hydrolysis for ATP of ALP can hinder this binding process, therefore, the biosensor could be indirectly applied for ALP analysis with a detection limit of 0.21 mU/L (3 δ /slope). Since some small changes of the two targets will set off a whole series of changes in system, the OHP-extended biosensor provides a superior electrochemical platform for complex biological processes with causal relationships in clinical diagnosis and drug development, similar to the butterfly effect. Graphical abstract
doi_str_mv 10.1007/s10800-022-01789-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775392703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775392703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-72157e455aeba93258c24dcdd105c842b2d1f990153ebd1b8490bd40a1fb0dad3</originalsourceid><addsrcrecordid>eNp9UM1OGzEQtioqNdC-QE-WOJuOveuutzcUFYqExAEq9Wb5Z5xssrG39uaQh-g71yEgbpxGM9-f5iPkK4crDtB9KxwUAAMhGPBO9Ux-IAsuO8GUatQZWQAIzlTP_3wi56VsAKAX39sF-fc4oRvC4Og-jslth7iiKdB5jdTu5xlzGA8UQ0A3_6DRxDTE49E4ZNYU9BTHCuXk1rgbnBmpHVLBWF58jMeY6oJ0zsO0TmVamxmpiZ6acWvGI_J6rnafycdgxoJfXuYF-X3z82n5i90_3N4tr--ZEx3MrBP1NWylNGhN3wipnGi9856DdKoVVnge-h64bNB6blXbg_UtGB4seOObC3J58p1y-rvHMutN2udYI7XoOtn0NaapLHFiuZxKyRj0lIedyQfNQR9r16fada1dP9euZRU1J1Gp5LjC_Gb9juo_DJqJdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775392703</pqid></control><display><type>article</type><title>Specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate and alkaline phosphatase</title><source>Springer Nature - Complete Springer Journals</source><creator>Hu, Kaiyue ; Ren, Xinxin ; Qin, Lingxia ; Guo, Zhiyong ; Wu, Di ; Wang, Sui ; Hu, Yufang</creator><creatorcontrib>Hu, Kaiyue ; Ren, Xinxin ; Qin, Lingxia ; Guo, Zhiyong ; Wu, Di ; Wang, Sui ; Hu, Yufang</creatorcontrib><description>The purpose of this study was to achieve a specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate (ATP) and alkaline phosphatase (ALP). Based on the Faraday-cage concept reported first by our group, we built a new outer Helmholtz plane (OHP)-based electrochemical biosensor by using an unique nanocomposite involving three-dimensional graphene-Au nanoparticles (3D-GO-AuNPs), tetrahedral DNA nanostructures (TDNs), and separated ATP aptamers, in which methylene blue (MB) was employed as the electrochemical signal output. In this process, the prepared nanocomposites were attached favorably onto the TDN substrate electrode surface due to the interaction of ATP and its aptamer, creating a better OHP of the electrode owing to its large enough specific surface area; then a detection limit of 0.25 pM was calculated by 3 δ /slope. Whereas, the hydrolysis for ATP of ALP can hinder this binding process, therefore, the biosensor could be indirectly applied for ALP analysis with a detection limit of 0.21 mU/L (3 δ /slope). Since some small changes of the two targets will set off a whole series of changes in system, the OHP-extended biosensor provides a superior electrochemical platform for complex biological processes with causal relationships in clinical diagnosis and drug development, similar to the butterfly effect. Graphical abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-022-01789-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adenosine triphosphate ; Alkaline phosphatase ; Biological activity ; Biosensors ; Chemistry ; Chemistry and Materials Science ; Electrochemistry ; Electrodes ; Gold ; Graphene ; Industrial Chemistry/Chemical Engineering ; Methylene blue ; Nanocomposites ; Nanoparticles ; Phosphatase ; Physical Chemistry ; Research Article ; Signal processing ; Substrates</subject><ispartof>Journal of applied electrochemistry, 2023-03, Vol.53 (3), p.547-557</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-72157e455aeba93258c24dcdd105c842b2d1f990153ebd1b8490bd40a1fb0dad3</cites><orcidid>0000-0002-5973-2527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-022-01789-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-022-01789-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Hu, Kaiyue</creatorcontrib><creatorcontrib>Ren, Xinxin</creatorcontrib><creatorcontrib>Qin, Lingxia</creatorcontrib><creatorcontrib>Guo, Zhiyong</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Wang, Sui</creatorcontrib><creatorcontrib>Hu, Yufang</creatorcontrib><title>Specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate and alkaline phosphatase</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>The purpose of this study was to achieve a specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate (ATP) and alkaline phosphatase (ALP). Based on the Faraday-cage concept reported first by our group, we built a new outer Helmholtz plane (OHP)-based electrochemical biosensor by using an unique nanocomposite involving three-dimensional graphene-Au nanoparticles (3D-GO-AuNPs), tetrahedral DNA nanostructures (TDNs), and separated ATP aptamers, in which methylene blue (MB) was employed as the electrochemical signal output. In this process, the prepared nanocomposites were attached favorably onto the TDN substrate electrode surface due to the interaction of ATP and its aptamer, creating a better OHP of the electrode owing to its large enough specific surface area; then a detection limit of 0.25 pM was calculated by 3 δ /slope. Whereas, the hydrolysis for ATP of ALP can hinder this binding process, therefore, the biosensor could be indirectly applied for ALP analysis with a detection limit of 0.21 mU/L (3 δ /slope). Since some small changes of the two targets will set off a whole series of changes in system, the OHP-extended biosensor provides a superior electrochemical platform for complex biological processes with causal relationships in clinical diagnosis and drug development, similar to the butterfly effect. Graphical abstract</description><subject>Adenosine triphosphate</subject><subject>Alkaline phosphatase</subject><subject>Biological activity</subject><subject>Biosensors</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Gold</subject><subject>Graphene</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Methylene blue</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Phosphatase</subject><subject>Physical Chemistry</subject><subject>Research Article</subject><subject>Signal processing</subject><subject>Substrates</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UM1OGzEQtioqNdC-QE-WOJuOveuutzcUFYqExAEq9Wb5Z5xssrG39uaQh-g71yEgbpxGM9-f5iPkK4crDtB9KxwUAAMhGPBO9Ux-IAsuO8GUatQZWQAIzlTP_3wi56VsAKAX39sF-fc4oRvC4Og-jslth7iiKdB5jdTu5xlzGA8UQ0A3_6DRxDTE49E4ZNYU9BTHCuXk1rgbnBmpHVLBWF58jMeY6oJ0zsO0TmVamxmpiZ6acWvGI_J6rnafycdgxoJfXuYF-X3z82n5i90_3N4tr--ZEx3MrBP1NWylNGhN3wipnGi9856DdKoVVnge-h64bNB6blXbg_UtGB4seOObC3J58p1y-rvHMutN2udYI7XoOtn0NaapLHFiuZxKyRj0lIedyQfNQR9r16fada1dP9euZRU1J1Gp5LjC_Gb9juo_DJqJdg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Hu, Kaiyue</creator><creator>Ren, Xinxin</creator><creator>Qin, Lingxia</creator><creator>Guo, Zhiyong</creator><creator>Wu, Di</creator><creator>Wang, Sui</creator><creator>Hu, Yufang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5973-2527</orcidid></search><sort><creationdate>20230301</creationdate><title>Specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate and alkaline phosphatase</title><author>Hu, Kaiyue ; Ren, Xinxin ; Qin, Lingxia ; Guo, Zhiyong ; Wu, Di ; Wang, Sui ; Hu, Yufang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-72157e455aeba93258c24dcdd105c842b2d1f990153ebd1b8490bd40a1fb0dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenosine triphosphate</topic><topic>Alkaline phosphatase</topic><topic>Biological activity</topic><topic>Biosensors</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Gold</topic><topic>Graphene</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Methylene blue</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Phosphatase</topic><topic>Physical Chemistry</topic><topic>Research Article</topic><topic>Signal processing</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Kaiyue</creatorcontrib><creatorcontrib>Ren, Xinxin</creatorcontrib><creatorcontrib>Qin, Lingxia</creatorcontrib><creatorcontrib>Guo, Zhiyong</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Wang, Sui</creatorcontrib><creatorcontrib>Hu, Yufang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Kaiyue</au><au>Ren, Xinxin</au><au>Qin, Lingxia</au><au>Guo, Zhiyong</au><au>Wu, Di</au><au>Wang, Sui</au><au>Hu, Yufang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate and alkaline phosphatase</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>53</volume><issue>3</issue><spage>547</spage><epage>557</epage><pages>547-557</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>The purpose of this study was to achieve a specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate (ATP) and alkaline phosphatase (ALP). Based on the Faraday-cage concept reported first by our group, we built a new outer Helmholtz plane (OHP)-based electrochemical biosensor by using an unique nanocomposite involving three-dimensional graphene-Au nanoparticles (3D-GO-AuNPs), tetrahedral DNA nanostructures (TDNs), and separated ATP aptamers, in which methylene blue (MB) was employed as the electrochemical signal output. In this process, the prepared nanocomposites were attached favorably onto the TDN substrate electrode surface due to the interaction of ATP and its aptamer, creating a better OHP of the electrode owing to its large enough specific surface area; then a detection limit of 0.25 pM was calculated by 3 δ /slope. Whereas, the hydrolysis for ATP of ALP can hinder this binding process, therefore, the biosensor could be indirectly applied for ALP analysis with a detection limit of 0.21 mU/L (3 δ /slope). Since some small changes of the two targets will set off a whole series of changes in system, the OHP-extended biosensor provides a superior electrochemical platform for complex biological processes with causal relationships in clinical diagnosis and drug development, similar to the butterfly effect. Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-022-01789-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5973-2527</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-891X
ispartof Journal of applied electrochemistry, 2023-03, Vol.53 (3), p.547-557
issn 0021-891X
1572-8838
language eng
recordid cdi_proquest_journals_2775392703
source Springer Nature - Complete Springer Journals
subjects Adenosine triphosphate
Alkaline phosphatase
Biological activity
Biosensors
Chemistry
Chemistry and Materials Science
Electrochemistry
Electrodes
Gold
Graphene
Industrial Chemistry/Chemical Engineering
Methylene blue
Nanocomposites
Nanoparticles
Phosphatase
Physical Chemistry
Research Article
Signal processing
Substrates
title Specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate and alkaline phosphatase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specific%20unlocking%20of%20the%20butterfly%20effect:%20nanointerface-based%20electrochemical%20biosensing%20of%20adenosine%20triphosphate%20and%20alkaline%20phosphatase&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Hu,%20Kaiyue&rft.date=2023-03-01&rft.volume=53&rft.issue=3&rft.spage=547&rft.epage=557&rft.pages=547-557&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-022-01789-5&rft_dat=%3Cproquest_cross%3E2775392703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775392703&rft_id=info:pmid/&rfr_iscdi=true