Traffic rate network tomography with higher‐order cumulants

Network tomography aims at estimating source–destination traffic rates from link traffic measurements. This inverse problem was formulated by Vardi in 1996 for Poisson traffic over networks operating under deterministic as well as random routing regimes. In this article, we expand Vardi's secon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks 2023-03, Vol.81 (2), p.220-234
Hauptverfasser: Lev‐Ari, Hanoch, Ephraim, Yariv, Mark, Brian L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 2
container_start_page 220
container_title Networks
container_volume 81
creator Lev‐Ari, Hanoch
Ephraim, Yariv
Mark, Brian L.
description Network tomography aims at estimating source–destination traffic rates from link traffic measurements. This inverse problem was formulated by Vardi in 1996 for Poisson traffic over networks operating under deterministic as well as random routing regimes. In this article, we expand Vardi's second‐order moment matching rate estimation approach to higher‐order cumulant matching with the goal of increasing the column rank of the mapping and consequently improving the rate estimation accuracy. We develop a systematic set of linear cumulant matching equations and express them compactly in terms of the Khatri–Rao product. Both least squares estimation and iterative minimum I‐divergence estimation are considered. We develop an upper bound on the mean squared error (MSE) in least squares rate estimation from empirical cumulants. We demonstrate that supplementing Vardi's approach with the third‐order empirical cumulant reduces its minimum averaged normalized MSE in rate estimation by almost 20% when iterative minimum I‐divergence estimation was used.
doi_str_mv 10.1002/net.22127
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775363884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775363884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2577-259d4215940baa4f3294357e8f1a2d3956e7cc067a9d43b843d1ca74c2b545793</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEiUw8AaRmBjS-rdOBgZUtYBUwRJmy3GcJiWty3WiKhuPwDPyJBjCynSHe853dT-ErgmeEozpbG-7KaWEyhM0ITiTCcZMnqJJ2KUJw1ycowvvtxgTIkg6QXc56KpqTAy6s3Gwjw7e4s7t3Ab0oR7iY9PVcd1sagtfH58OSgux6Xd9q_edv0RnlW69vfqbEXpdLfPFY7J-eXha3K8TQ4WUCRVZySkRGceF1rxiNONMSJtWRNOSZWJupTF4LnXgWJFyVhKjJTe0EFzIjEXoZsw9gHvvre_U1vWwDycVlVKwOUuDFKHbkTLgvAdbqQM0Ow2DIlj9tKPCf-q3ncDORvbYtHb4H1TPy3w0vgEJRWYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775363884</pqid></control><display><type>article</type><title>Traffic rate network tomography with higher‐order cumulants</title><source>Wiley Journals</source><creator>Lev‐Ari, Hanoch ; Ephraim, Yariv ; Mark, Brian L.</creator><creatorcontrib>Lev‐Ari, Hanoch ; Ephraim, Yariv ; Mark, Brian L.</creatorcontrib><description>Network tomography aims at estimating source–destination traffic rates from link traffic measurements. This inverse problem was formulated by Vardi in 1996 for Poisson traffic over networks operating under deterministic as well as random routing regimes. In this article, we expand Vardi's second‐order moment matching rate estimation approach to higher‐order cumulant matching with the goal of increasing the column rank of the mapping and consequently improving the rate estimation accuracy. We develop a systematic set of linear cumulant matching equations and express them compactly in terms of the Khatri–Rao product. Both least squares estimation and iterative minimum I‐divergence estimation are considered. We develop an upper bound on the mean squared error (MSE) in least squares rate estimation from empirical cumulants. We demonstrate that supplementing Vardi's approach with the third‐order empirical cumulant reduces its minimum averaged normalized MSE in rate estimation by almost 20% when iterative minimum I‐divergence estimation was used.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.22127</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Divergence ; Estimation ; higher‐order cumulants ; inverse problem ; Inverse problems ; Least squares ; Matching ; mean squared error ; network tomography ; network traffic ; Poisson model ; Tomography ; Upper bounds</subject><ispartof>Networks, 2023-03, Vol.81 (2), p.220-234</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2577-259d4215940baa4f3294357e8f1a2d3956e7cc067a9d43b843d1ca74c2b545793</cites><orcidid>0000-0003-1937-5702 ; 0000-0002-4030-5592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.22127$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.22127$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lev‐Ari, Hanoch</creatorcontrib><creatorcontrib>Ephraim, Yariv</creatorcontrib><creatorcontrib>Mark, Brian L.</creatorcontrib><title>Traffic rate network tomography with higher‐order cumulants</title><title>Networks</title><description>Network tomography aims at estimating source–destination traffic rates from link traffic measurements. This inverse problem was formulated by Vardi in 1996 for Poisson traffic over networks operating under deterministic as well as random routing regimes. In this article, we expand Vardi's second‐order moment matching rate estimation approach to higher‐order cumulant matching with the goal of increasing the column rank of the mapping and consequently improving the rate estimation accuracy. We develop a systematic set of linear cumulant matching equations and express them compactly in terms of the Khatri–Rao product. Both least squares estimation and iterative minimum I‐divergence estimation are considered. We develop an upper bound on the mean squared error (MSE) in least squares rate estimation from empirical cumulants. We demonstrate that supplementing Vardi's approach with the third‐order empirical cumulant reduces its minimum averaged normalized MSE in rate estimation by almost 20% when iterative minimum I‐divergence estimation was used.</description><subject>Divergence</subject><subject>Estimation</subject><subject>higher‐order cumulants</subject><subject>inverse problem</subject><subject>Inverse problems</subject><subject>Least squares</subject><subject>Matching</subject><subject>mean squared error</subject><subject>network tomography</subject><subject>network traffic</subject><subject>Poisson model</subject><subject>Tomography</subject><subject>Upper bounds</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kL1OwzAURi0EEiUw8AaRmBjS-rdOBgZUtYBUwRJmy3GcJiWty3WiKhuPwDPyJBjCynSHe853dT-ErgmeEozpbG-7KaWEyhM0ITiTCcZMnqJJ2KUJw1ycowvvtxgTIkg6QXc56KpqTAy6s3Gwjw7e4s7t3Ab0oR7iY9PVcd1sagtfH58OSgux6Xd9q_edv0RnlW69vfqbEXpdLfPFY7J-eXha3K8TQ4WUCRVZySkRGceF1rxiNONMSJtWRNOSZWJupTF4LnXgWJFyVhKjJTe0EFzIjEXoZsw9gHvvre_U1vWwDycVlVKwOUuDFKHbkTLgvAdbqQM0Ow2DIlj9tKPCf-q3ncDORvbYtHb4H1TPy3w0vgEJRWYs</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Lev‐Ari, Hanoch</creator><creator>Ephraim, Yariv</creator><creator>Mark, Brian L.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1937-5702</orcidid><orcidid>https://orcid.org/0000-0002-4030-5592</orcidid></search><sort><creationdate>202303</creationdate><title>Traffic rate network tomography with higher‐order cumulants</title><author>Lev‐Ari, Hanoch ; Ephraim, Yariv ; Mark, Brian L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2577-259d4215940baa4f3294357e8f1a2d3956e7cc067a9d43b843d1ca74c2b545793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Divergence</topic><topic>Estimation</topic><topic>higher‐order cumulants</topic><topic>inverse problem</topic><topic>Inverse problems</topic><topic>Least squares</topic><topic>Matching</topic><topic>mean squared error</topic><topic>network tomography</topic><topic>network traffic</topic><topic>Poisson model</topic><topic>Tomography</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lev‐Ari, Hanoch</creatorcontrib><creatorcontrib>Ephraim, Yariv</creatorcontrib><creatorcontrib>Mark, Brian L.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lev‐Ari, Hanoch</au><au>Ephraim, Yariv</au><au>Mark, Brian L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic rate network tomography with higher‐order cumulants</atitle><jtitle>Networks</jtitle><date>2023-03</date><risdate>2023</risdate><volume>81</volume><issue>2</issue><spage>220</spage><epage>234</epage><pages>220-234</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><abstract>Network tomography aims at estimating source–destination traffic rates from link traffic measurements. This inverse problem was formulated by Vardi in 1996 for Poisson traffic over networks operating under deterministic as well as random routing regimes. In this article, we expand Vardi's second‐order moment matching rate estimation approach to higher‐order cumulant matching with the goal of increasing the column rank of the mapping and consequently improving the rate estimation accuracy. We develop a systematic set of linear cumulant matching equations and express them compactly in terms of the Khatri–Rao product. Both least squares estimation and iterative minimum I‐divergence estimation are considered. We develop an upper bound on the mean squared error (MSE) in least squares rate estimation from empirical cumulants. We demonstrate that supplementing Vardi's approach with the third‐order empirical cumulant reduces its minimum averaged normalized MSE in rate estimation by almost 20% when iterative minimum I‐divergence estimation was used.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/net.22127</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1937-5702</orcidid><orcidid>https://orcid.org/0000-0002-4030-5592</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-3045
ispartof Networks, 2023-03, Vol.81 (2), p.220-234
issn 0028-3045
1097-0037
language eng
recordid cdi_proquest_journals_2775363884
source Wiley Journals
subjects Divergence
Estimation
higher‐order cumulants
inverse problem
Inverse problems
Least squares
Matching
mean squared error
network tomography
network traffic
Poisson model
Tomography
Upper bounds
title Traffic rate network tomography with higher‐order cumulants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic%20rate%20network%20tomography%20with%20higher%E2%80%90order%20cumulants&rft.jtitle=Networks&rft.au=Lev%E2%80%90Ari,%20Hanoch&rft.date=2023-03&rft.volume=81&rft.issue=2&rft.spage=220&rft.epage=234&rft.pages=220-234&rft.issn=0028-3045&rft.eissn=1097-0037&rft_id=info:doi/10.1002/net.22127&rft_dat=%3Cproquest_cross%3E2775363884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775363884&rft_id=info:pmid/&rfr_iscdi=true